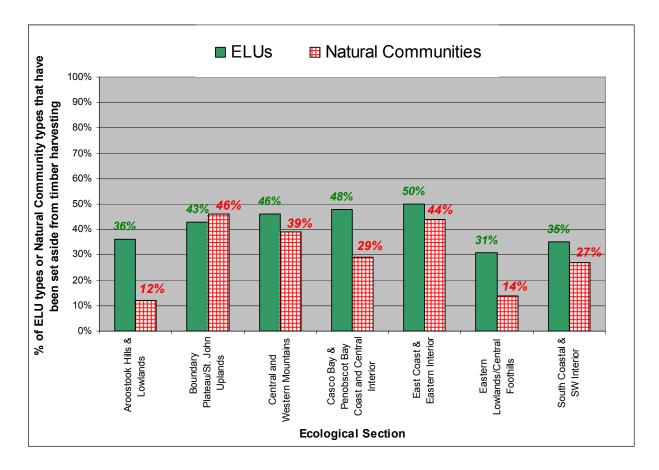
Saving all the Parts: A Conservation Vision for Maine Using Ecological Land Units

Andy Cutko and Rick Frisina Maine Natural Areas Program Department of Conservation May 2005

Executive Summary


The pace and scale of Maine's land conservation projects have grown dramatically in recent years, with more than 1.5 million acres protected in the last decade. While conservation strategies have been guided by the current condition of forests and wetlands, less attention has been directed to protecting the "enduring features" of landform, geology, and elevation. By incorporating patterns of these enduring features, depicted as Ecological Land Units (ELUs), into conservation planning, we can more fully account for the variability inherent in the underlying landscape and the biodiversity it supports.

This project explores the relationship between Maine's biotic landscape, in the form of natural communities, and the physical landscape, in form of ELUs. It also examines how well natural communities and ELUs are represented in Maine's current conservation lands. Specifically, this project has three objectives:

- 1. Assess the current representation of Ecological Land Units (abiotic factors) and natural communities (biotic factors) on conserved land in Maine, including Maine's Ecological Reserves.
- 2. Identify landscape features (both biotic and abiotic) in Maine that are under-represented on Maine's protected lands.
- 3. Investigate relationships between ELUs and natural communities, and test the utility of ELUs for identifying and predicting natural communities.

While 15% of Maine's lands are in some form of conservation (ownership or easement), only 3% are restricted from timber harvesting. Our results indicate that viable examples of 79 of the state's 98 natural community types (81%) are represented on conserved lands that have been set aside from timber harvesting. Of the nineteen types *not* represented, twelve are rare (i.e., ranked S1, S2, or S3), and only two are forested (Balsam Poplar Floodplain Forest and Hardwood Seepage Forest).

Natural community representation is poorer when geographic representation is considered. Dividing the state into seven geographic "sections," only 31% of the natural community types are represented on lands restricted from timber harvesting. Not surprisingly, portions of the state with the largest amount of conservation land, such as northwest Maine, have the best representation of natural communities. Conversely, regions with comparatively less conservation land, such as the Aroostook Hills and Lowlands, Eastern Lowlands, and South Coastal and Southern Interior sections, have poorer protection of natural communities (see figure below).

Representation of ELUs may be assessed through individual ELUs or ELU groups (ELUs clustered into more broadly defined units). Representation of ELUs and ELU groups is higher statewide than representation of natural communities. Of the 368 ELUs found across Maine, 336 (91%) are represented on conservation land as a whole, and 294 (80%) are represented on the subset of conserved land that is restricted from timber harvesting. Within each of Maine's seven geographic sections, an average of 41% of the ELU types are captured within the subset of conservation lands restricted from timber harvesting (see figure above).

Each of Maine's 25 ELU *groups* are represented on conservation lands statewide, and conservation lands within each of the state's seven geographic sections contain an average of 78% of the ELU groups known to occur in those respective regions. Most ELU groups that are inadequately represented on conservation lands are rare in each geographic section and account for less than 1% of each section's landscape.

In comparison to natural communities, the higher representation of ELUs and ELU groups on conservation land may be explained by at least two factors. First, natural community representation is limited by the incompleteness of our inventory efforts; ELU data, in contrast, is available as a "wall to wall" coverage of the state. Moreover, our analysis of ELU representation considers only *presence/absence* and *relative proportions*, while natural community representation includes considerations of minimum size and condition (i.e., viability or ecological integrity).

The ELU components of geology, slope, and landform may be highly effective at predicting natural community occurrence on the landscape. Using over 1,000 mapped natural communities, ELU components predicted the correct natural communities more than 80% of the time. The success of ELU groups at predicting natural communities varied by group. In a case study of the Bigelow Reserve, the "Alpine" ELU group was mapped with the appropriate natural communities at Bigelow was not as strong, in part due to issues of scale. Most of the "Acidic Cliff/Outcrop/Talus" ELU group, for example, is mapped as Fir – Heartleaf Birch Sub-alpine Forest, likely because the acidic cliffs portrayed by ELU groups occur at too fine a scale to be depicted on natural community maps derived from air photos.

The results of this study indicate that ELUs may serve several important roles in conservation planning:

- 1) Identifying specific areas of the state that could fill ecological gaps in the state's portfolio of conservation lands, such as the Aroostook Hills and Lowlands, Eastern Lowlands, and South Coastal Plain.
- 2) Serving as an effective surrogate for approximating natural community diversity in cases where natural community information is lacking; and
- 3) Incorporating a representative diversity of enduring features and conserving their associated biodiversity over the long term.

The creation and application of ELUs are relatively recent additions to the state's conservation toolbox. Additional work would be useful at improving the utility of ELUs for the purposes noted above. Some of these "next steps" are noted below:

- Natural community representation on conservation lands is limited by the incompleteness of natural community data. MNAP efforts to complete an initial broad-brush inventory of the state are currently scheduled to finish within the next five years, but this effort is contingent on funding.
- This type of analysis points to the need for a complete, unified, accessible database of conservation lands in the state. Currently this information is held by numerous parties with no protocol for acquiring or sharing data.
- Minimum area thresholds are needed to approximate the size required for an ELU or ELU group to support viable natural communities. This minimum area would relate to the natural patch size (small patch, large patch, matrix) of the ELUs or ELU groups and associated natural communities.
- Further work is needed to describe, quantify, and map larger landscape units (i.e. at the scale of township or larger) that capture specific repeated patterns and orientations of ELUs and ELU groups.

Acknowledgements

Staff at The Nature Conservancy created the bulk of the underlying data for Ecological Land Units beginning in the late 1990s. Mark Anderson provided the initial inspiration and creative thinking behind this concept, and he pioneered the original data development. Specialists Charles Ferree and Greg Kehm further developed Mark's original work by collecting and processing volumes of data throughout the region. Here in Maine, Dan Coker has loaned his GIS expertise and patience to the development of ELUs for Maine application.

An ecological team of Josh Royte, Sue Gawler, and Janet McMahon participated in exhaustive discussions about the meaning, application, and utility of Ecological Land Units, and the team reviewed several versions of cross-walks between ELUs and natural communities. Josh in particular has been pivotal in moving this project forward as an avenue to assess representation and gaps in Maine's conservation lands. Barbara Vickery provided timely and useful "reality checks" to keep the balance from tipping from the practical to the theoretical. Roger Milliken gamely offered Baskahegan lands as a testing ground for applying our methodologies.

Within the Maine Natural Areas Program, Brooke Wilkerson drafted an initial crosswalk of ELU components to natural communities and provided valuable feedback on the report. Stephanie Gregoire entered data and created spreadsheets for our analysis. Emily Pinkham provided useful financial and administrative oversight. Molly Docherty offered support, oversight, and (most importantly) patience throughout the process!

Funding for this project was provided by the Maine Outdoor Heritage Fund and The Nature Conservancy.

Contents

Executive Summary	2
Acknowledgements	5
Contents	6
List of Figures	8
List of Tables	9
1.0 Introduction	10
1.1 Conservation Land in Maine	11
1.2 What are Ecological Land Units?	14
1.3 Why are Ecological Land Units Important to Conservation?	15
1.4 Project Objectives	17
2.0 Working with ELU's	18
2.1 Development of Ecological Land Units for Maine	18
2.2 Advantages of the Ecological Land Unit Model	20
2.3 Limitations of the Ecological Land Unit Model	20
2.4 Isolating ELU Components versus ELU's	20
2.5 ELUs versus Grouped ELUs	22
3.0 Natural Community Representation on Conserved Lands	25
3.1 Methodology	25
3.2 Results	26
3.3 Discussion	31

4.0 ELU Representation on Conserved Lands	33
4.1 Methodology	33
4.2 Results	34
4.3 Discussion	41
5.0 Correlation of ELUs with Mapped Natural Communities	42
5.1 Methodology	42
5.2 Results	43
5.3 Discussion	47
6.0 Conclusions	48
6.1 What is lacking from Maine's Conservation Portfolio?	48
6.2 Comparing Representation of ELUs and Natural Communities	50
6.3 Applying ELUs to Conservation Planning	51
6.4 Additional Research Needs	52
7.0 Literature Cited	54
8.0 Appendices	55
8.1 ELU Components and Predicted Natural Community Occurrences	56
8.2 ELU Groups for Maine	60
8.3 ELU Components x Conserved Lands x Ecological Sections	61
8.4 ELUs x Conserved Lands x Ecological Sections	64
8.5 ELU Groups x Conserved Lands x Ecological Sections	69
8.6 ELU and Predicted Natural Community Types	71
8.7 Correlation of Natural Communities and Grouped ELUs on the Bigelow Preserve	74

List of Figures

Figure 1: Representation Analysis and links between ELU and Natural Communities	11
Figure 2: Conservation Lands in Maine by Biophysical Section	12
Figure 3: Conservation Lands in Maine	13
Figure 4: Ecological Land Unit Components	14
Figure 5: Flow Diagram of ELU development	18
Figure 6: Assembly of ELU Components	19
Figure 7: Nesting of ELU Components, ELUs, and Grouped ELUs	21
Figure 8: ELUs within Maine's Eastern Lowlands Section	23
Figure 9: Grouped ELUs within Maine's Eastern Lowlands Section	24
Figure 10: Proportions of the State's 98 Natural Community Types with Good Examples on Type 1 Conserved Lands (All Conserved Lands)	26
Figure 11: Proportions of the State's 98 Natural Community Types with Good Examples on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	27
Figure 12: Representation of Natural Communities on Type 2 Conserved Lands (Gap 1, Gap 2, Ecological Reserves)	27
Figure 13: Aroostook Hills & Lowlands – Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	29
Figure 14: Boundary Plateau / St.John Uplands – Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	29
Figure 15 : Casco Bay / Penobscot Bay / Central Interior - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	30
Figure 16 : Central & Western Mountains - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	30
Figure 17: East Coast / Eastern Interior - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	31
Figure 18: Eastern Lowlands & Central Foothills - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	31
Figure 19: South Coastal & South West Interior - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	32
Figure 20: Adequate ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	36
Figure 21: Adequate Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	37

Figure 22:	Aroostook Hill & Lowlands - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	38
Figure 23:	Boundary Plateau / St.John Uplands - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	38
Figure 24:	Casco Bay / Penobscot Bay / Central Interior - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	39
Figure 25:	Central & Western Mountains - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	39
Figure 26:	East Coast / Eastern Interior - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	40
Figure 27:	Eastern Lowlands & Central Foothills - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	40
Figure 28:	South Coastal & South West Interior - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	41
Figure 29:	Precision of Elevation in prediciting Natural Community Type	44
Figure 30:	Precision of Landform in predicting Natural Community Type	44
Figure 31:	Precision of Geology in prediciting Natural Community Type	45
Figure 32:	Precision of MRLC Land Cover in predicting Natural Community Type	45
Figure 33:	ELU Groups and Natural Communities on the Bigelow Ecologcial Reserve	46
Figure 34:	A Comparison of Representational Analyses on Type 2 Conserved Lands	50
Figure 35:	Sample map indicating Under-Represented ELU groups (yellow) and Non- Represented groups (red) on a hypothetical ownership in Maine	52

List of Tables

Table 1: Conservation Lands in Maine	11
Table 2: Statewide Community Representation on Type 2 Conserved Lands	27
Table 3: Presentation of ELU Representational Analysis Results	34
Table 4: Representation of ELUs on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	35
Table 5: Community Types not represented on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)	48
Table 6: Acreages of Under-Represented ELU groups (yellow) and Non-Represented groups (red) on a hypothetical ownership in Maine	51

1.0 Introduction

Traditionally many conservation planning efforts have focused on assessing ecological information such as rare species, important habitats, and forest conditions, within the context of surrounding land uses and land protection. Many of these analyses disproportionately weight the current condition of the landscape and are consequently affected by relatively short-term influences, such as timber harvesting. Even the Maine Natural Areas Program's own "landscape analysis" is heavily focused on evaluating current conditions, such as forest stand types depicted in air photos and remote sensing imagery, and presence or absence of rare species. In the long term, however, the current biological conditions of the landscape are dynamic, and the underlying "enduring physical features" are likely to be a dominant influence on why and where certain habitats occur.

This project looks beyond the current condition of Maine's landscape and focuses instead on the variation of Maine's Ecological Land Units as an indication of how effective conservation actions are at protecting biological diversity of Maine. Ecological Land Units are unique combinations of geology, landform, and elevation that may be used to model how natural communities occur on the landscape. The results of the project will enable the people of Maine to make more informed long-term decisions about land acquisition and will provide large landowners with a better ecological framework for managing and conserving their lands.

The urgency for this project stems from multiple requests the Maine Natural Areas Program has received over recent years from public and corporate landowners and conservation groups regarding lands available for acquisition. The question constantly arises about how unique an area is, beyond the standing timber, and whether it merits consideration for acquisition or special management. In this report, the Maine Natural Areas Program begins to answer these questions by conducting a statewide analysis of:

- 1) the degree to which conservation lands currently incorporate natural community diversity in Maine;
- 2) the degree to which conservation lands incorporate diversity in Ecological Land Units; and
- 3) the relationships between natural communities and Ecological Land Units.

These topics and relationships are depicted in Figure 1. The results of our study will provide a scorecard of how Maine is doing at protecting the diversity of Maine's biological and physical features.

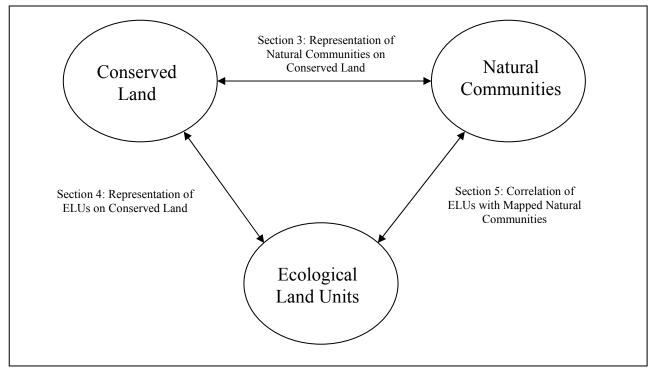


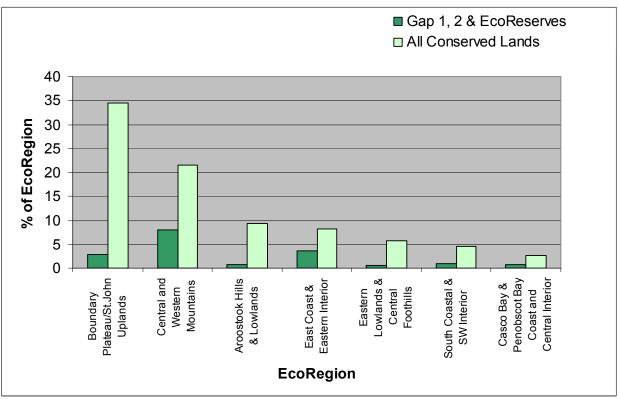
Figure 1: Representation Analysis and links between ELU and Natural Communities

1.1 Conservation Land in Maine

Using the best available data, there are currently 3,087,100 acres of "conservation land" in Maine, accounting for just under 15% of the state. (The state's database of conservation lands is not complete, omitting numerous small land trust parcels, municipal lots, and some privately held conservation lands.) This conservation land includes parcels with a variety of restrictions, including "working forest" conservation easements, public lands managed for multiple uses, private conservation lands, state Ecological Reserves, and others (Table 1).

Table 1: Conservation Lands in Maine (not all categories are included in sub-totals)

	Acres	Composition
Total Area under Broad Form of Conservation	3,087,100	Conservation easements and fee ownership. Excludes pending easements and acquisitions.
State Owned Land	944,050	State owned lands (multiple Gap classes)
TNC Owned Land	257,200	TNC owned lands (multiple Gap classes)
Land Under Conservation Easement	1,463,200	Conservation easements only.
Lands Restricted from Harvesting (includes some federal, state, and TNC lands)	679,150	Gap 1 and 2 Lands and Ecological Reserves


Source: Managed Areas shape file provided by the Maine Field Office of The Nature Conservancy, 2005.

To more accurately characterize these lands, a Gap Status (Crist 2000) has been assigned to each parcel. Gap Status is a national classification system that uses four classes to denote the level of permanent land use restrictions on each parcel. Among other distinctions, Gap 1 and 2 lands are off-limits to timber harvesting, while Gap 3 and 4 lands are not. In this project we distinguished two types of conservation land:

- 1. Gap 1 and 2 lands (Maine's Ecological Reserves have been added to this group even though they are not permanently designated), and
- 2. Gap 3 and 4 lands, which represent conserved lands where timber harvesting is permitted

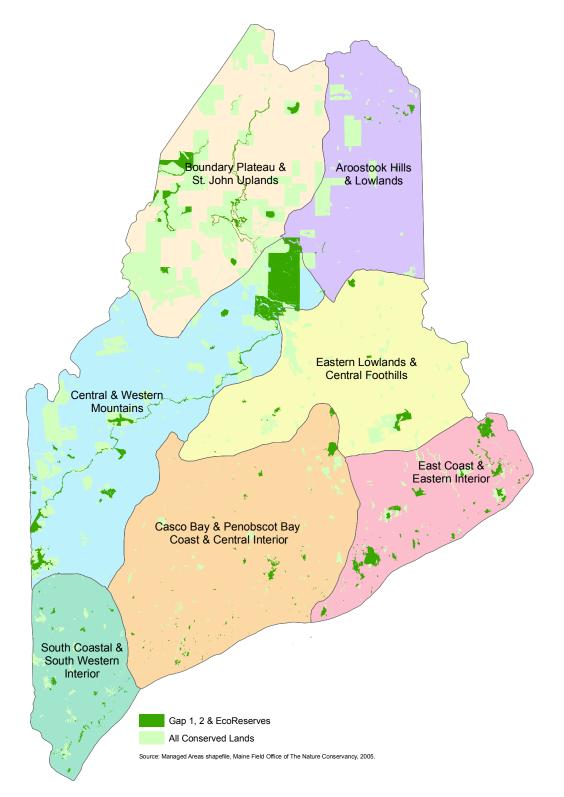

Figure 2 indicates the amount of each type of conservation land (in proportions, not absolute acres) in seven different biophysical sections of Maine, with northern and western Maine exhibiting substantially higher proportions of conservation lands.

Figure 2: Conservation Lands in Maine by Biophysical Section (Ecoregion)

Source: Managed Areas shape file, provided by the Maine Field Office of The Nature Conservancy, 2005.

Figure 3 depicts the location of these conservation lands. Notably, less than 600,000 acres, or 3% of Maine, is statutorily off-limits to timber harvesting. Over one-third of this acreage is within Baxter State Park and the adjacent TNC Debsconeag Reserve.

1.2 What are Ecological Land Units?

Ecological Land Units (ELUs) are a GIS-generated data set that represents a combination of three landscape components: elevation, geology and landform. "The data set was developed as a tool for assessing the biophysical character of landscapes and for modeling the community assemblages that might potentially occur across those landscapes" (*The Nature Conservancy, 2003*). The premise behind modeling natural communities is that their occurrence may be predicted by mapping the biophysical variables that influence their distribution (see further discussion in Section 1.3).

Despite their broad scope, elevation, geology and landform are often indicators of finer environmental gradients that are more closely tied to vegetation distribution, such as nutrient availability, moisture and temperature. Several abiotic data layers are used to derive the three ELU components. Landform is derived from a number of digital elevation model (DEM) generated products including slope, landscape position and moisture index. Geology is a combination of bedrock and surficial geology layers, while elevation is also a derivation of DEM.

By allocating a unique code to each of the three component categories, a distinct ELU number can be constructed that directly indicates the unique combination of the three components (Figure 4).

Elevatio	on	Geol	logy	Landform	
Code	Range (ft)	Code	Туре	Code	Туре
1000	0-800	100	Acidic Sedamentary/Metased.	4	Steep Slope
2000	800 - 1700	200	Acidic Shale	5	Cliff
3000	1700 - 2500	300	Calcareous Sedamentary/Metased.	11	Flat Summit/Ridge top
4000	2500 - 4000	400	Moderately Calc. Sed/Metased.	13	Slope Crest
		500	Acidic/Granitic	21	Low Hilltop (flat)
		600	Mafic/Intermediate Granitic	22	Low Hill (gentle slope)
		700	Ultramafic	23	N-Facing Side slope
		800	Outwash forest/wetland	24	S-Facing Side slope
		900	Fine Sediments	30	Dry Flat
				31	Wet Flat
				32	Valley/Toe Slope
				41	Bottom of Steep Slope
				43	N-Facing Cove/Draw
				44	S-Facing Cove/Draw

Figure 4: Ecological Land Unit Components

ELU = Elevation Code + Geology Code + Landform Code

Using this numbering schema, there are potentially 504 unique ELU types that may describe different combinations of the three component biophysical characteristics. Not all of the possible combinations occur in Maine.

1.3 Why are Ecological Land Units Important to Conservation?

Concepts of how to conserve biodiversity have evolved in recent decades, motivated by the experience of conservation practitioners and by applied and theoretical research in conservation biology. This evolution has resulted in an increased emphasis on the conservation of species, ecological communities, and landscapes at larger scales (Noss and Peters 1995). Coupled with this emphasis has been an increased appreciation for natural ecological processes and landscape-level factors that sustain these communities and ecosystems (Anderson 1999).

These developments have led federal, state, and private organizations to develop new scales and strategies for conservation planning. Foremost among these developments is the comprehensive design of reserve systems – networks of private conservation and public conservation lands that collectively conserve the full biological diversity of a given region as well as the landscape level processes that sustain them. By incorporating ELUs into conservation planning, we can more fully account for the variability inherent in the underlying landscape. The arguments for using ELUs are worth elucidating further:

• ELUs are a key influence on biotic communities.

Despite centuries of alteration by humans and thousands of years of disturbance by natural processes, there remains an obvious link between the physical attributes of a particular landscape (substrate, topography, climate) and what grows there. A hike up any one of Maine's 4000' foot peaks illustrates this connection. As one traverses through forests that transition from moist, lowland conifers to well-drained mid-slope hardwoods and then to higher elevation conifers, it is apparent that climate, slope, drainage, and aspect are all key determinants of vegetation. These vegetation communities are, in turn, associated with particular suites of animal species.

These links are well established in ecological literature. According to Franklin (1995), modeling of potential natural vegetation communities "rests on the premise that vegetation distribution can be predicted from the spatial distribution of environmental variables that correlate with or control plant distributions." Leak and Riddle (1979) focused on soil and geology as a link to tree species and composition: "The type and arrangement of plants would always serve as a mirror for the mixture of clay, silt, sand, and rock lying beneath them.... Knowing that trees differ in their requirements for nutrients and moisture, and that sites differ in their ability to supply these needs, we can correlate species to habitat and produce descriptions of typical combinations." Anderson et al (1998) summarized the importance of Ecological Land Units as follows: "Potential natural vegetation is determined directly by environmental gradients such as nutrient availability, moisture, and temperature. These environmental gradients are driven by broader determinants such as geology, climate, and topography. Therefore, in order to produce predictive vegetation maps the gradients thought to drive vegetation must be mapped or modeled themselves." In assessing vegetation as habitat for wildlife DeGraaf and Yamasaki (2001) composed a matrix that associates New England wildlife species with specific vegetation types and seral stages.

The connection between Ecological Land Units and associated vegetation is examined for Maine in this report, and is described further in Section 5.

• In comparison to the current composition of the land, ELUs likely serve as better long term indicators, or predictors, of the future ecological composition of natural areas.

As "enduring features" of the land, ELUs are much more permanent than the biotic communities they support. ELUs were determined by geologic and glacial processes initiated millions of years ago and culminating with the end of glacial activity ~11,000 years ago. In contrast, biotic communities exist in a dynamic state, responding on a much shorter time frame to both natural and human stresses. Silvicultural activities, for example, may shift the composition of a forest stand from mixed-wood to softwood-dominated, or an ice storm may convert a dense forest canopy into an open woodland with profuse seedling regeneration of shade-intolerant species. In the longer term, warming climate may shift Maine's spruce – northern hardwood forests toward oak-pine stands more characteristic of the Central Appalachian region.

Despite these stresses, underlying ELUs will remain largely unchanged, and given appropriate seed sources (and barring major invasions from non-native species), protected areas with little human intervention should gravitate over time to reflect the given subset of vegetation types associated with those particular ELUs. Consequently, ELUs may be a better tool for long term conservation planning than the existing vegetation. Accordingly, ELUs may serve as a surrogate for biological diversity at the landscape level where specific localized biological data proves inadequate or is absent. For conservation planning to be most effective, analysis of ELUs should complement rather than replace the biotic/land cover based landscape assessment approach.

• Allowing for representation of ELUs in conservation planning will provide the best "coarse filter" approach for capturing biodiversity in a dynamic landscape.

An emerging recognition of many large-scale conservation efforts is that some conservation targets (i.e., species, natural community types) may be merely ephemeral indicators, or placeholders, for conserving functional landscapes. These placeholders may serve as "focal species," "umbrella species," or "keystone species" – that is, coarse filters to capture the current wildlife assemblages, vegetation structure, composition, and landscape integrity of a particular place. These conservation targets, however, may be subject to degradation, elimination, transition, or even enhancement as a result of unforeseen natural stresses. For example, if conserving enough land and abating perceived threats, have the efforts completely failed? By one very visible measure they have, but countless other species and communities adapted to that landscape may still be sustained, including a potentially very different suite of communities a century or two from now. Similarly, it may not be critical or even realistic to expect that each of the component plant species of an Eccentric Bog is forever protected. It is important, however, that the bog is allowed to adapt to natural fluctuations in climate, hydrology, and succession, so that whatever biotic communities would naturally

accompany these changes are permitted to flourish without human alteration. In such a case, it is not the biotic communities that are the ultimate target of conservation, but the underlying landscape of abiotic features.

1.4 Project Objectives

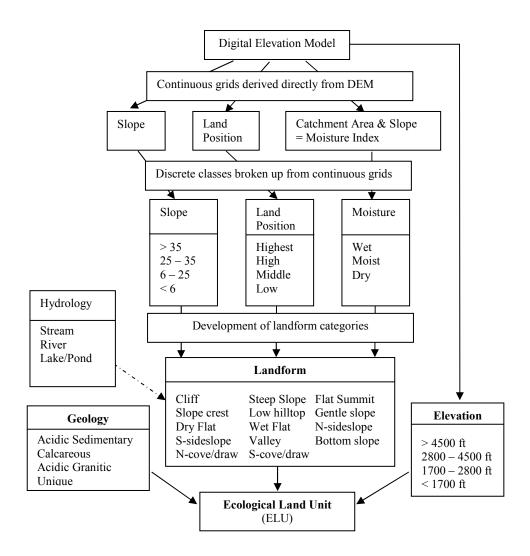
The following objectives were presented to the Maine Outdoor Heritage Fund:

- 1. Assess the current representation of Ecological Land Units (abiotic factors) and natural communities (biotic factors) on conserved land in Maine, including Maine's Ecological Reserves.
- 2. Identify landscape features (both biotic and abiotic) in Maine that are under-represented on Maine's protected lands.
- 3. Investigate relationships between ELUs and natural communities, and test the utility of ELUs for identifying and predicting natural communities.

These project objectives are key precursors to designing a conservation strategy built on ELUs. Such a strategy is based on achieving adequate representation of ELUs within protected lands, and it has two logical criteria:

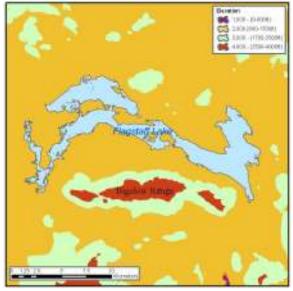
- **Representation Criterion: The** ELU composition within conserved lands should be proportional to the ELU composition in the broader region.
- Noah's Ark Criterion: All ELUs that occur in the region should be represented in conservation lands.

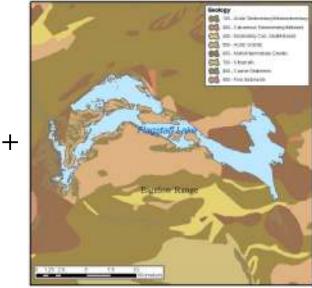
A notable limitation of the Representation Criterion is that it is relative rather than absolute. In other words, as long as the ELU *proportions* on conservation land are similar to those in the region as a whole, this criterion will be met. For example, if there were only 100 acres of conservation land in a two million acre region, all ELUs might still appear well represented if they occur in the same proportions within those 100 acres as they do in the larger region. In reality, many ELUs support natural communities that must have a minimum size to be viable. This minimum size concept varies however, depending on the natural patch size of the community and/or ELU (e.g., calcareous cliffs occur as small patches of an acre or less, while hardwood forests occur as matrix-forming stands of thousands of acres.) To sufficiently account for these issues of scale and viability, ELUs and ELU groups would need to be segregated into small patch, large patch, and matrix types, and minimum acreages applied for each type.


Another issue related to scale is the question of how large an area should be considered in a representational analysis: the ecological Province (e.g., Northern Appalachian – Boreal), the Section (Aroostook Hills and Lowlands), or the Subsection (e.g., Aroostook Hills). For the purposes of this report, we have chosen to conduct representational analysis at the intermediate level of "Section" (Figure 3) because it provides the most practical, robust scale for conservation planning.

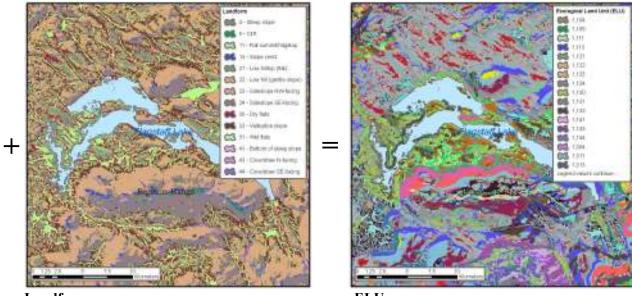
2.0 Working with ELUs

2.1 Development of Ecological Land Units for Maine


The Nature Conservancy's Eastern Conservation Science office in Boston developed ELUs for three ecoregional project areas that together cover the State of Maine. ELU data sets were generated for the Northern Appalachian, Lower New England – Northern Piedmont, and North Atlantic Coast regions in 2003. ELUs are raster GIS data sets. The ELUs developed by TNC were based on 30m digital elevation models (DEMs) available at that time. With 10m DEMs becoming available over the next two years in Maine, the Landform and Elevation components of the ELU data sets may be further improved.


Figure 5: Flow Diagram of ELU development (Anderson, Merrill and Biasi, 1998)

The ELU data set is modular by design so that additional component information may be added at any time. For example, hydrologic data can be added to expand the number of landform categories. Soils data may be added to complement geology, and current land cover condition may be added to better describe the biotic systems. Figure 6 indicates how the ELU components are combined to form ELUs for the region around Flagstaff Lake.


Figure 6: Assembly of ELU Components

Elevation

Geology

Landform

ELU

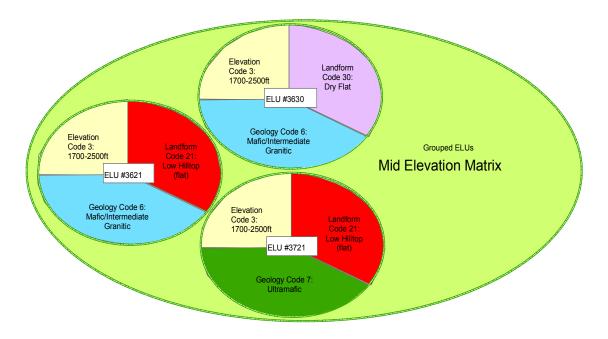
ELU = Elevation Code + Geology Code + Landform Code

2.2 Advantages of Ecological Land Units Model

- 1. The ELU is modular in design allowing easy manipulation including addition, separation and update of ELU components. For example, National Wetland Inventory data may be added to improve the "Wet Flats" category of Landform, which is very broad and includes multiple wetland natural community types.
- 2. The raster GIS data type makes analyses with ELUs in combination with other data layers easy to perform.
- 3. The ELU data set provides sufficient detail to allow investigation of their utility for modeling natural communities.

2.3 Limitations of the Ecological Land Unit Model

- 1. The ties between ELUs and on-the-ground vegetation have not been fully tested in a variety of conditions throughout the state.
- 2. The large number of different ELUs across Maine make it difficult to synthesize meaningful results from statewide analyses. There are many more ELUs in Maine than natural community types, suggesting that some ELU distinctions may not be ecologically meaningful. For instance, does the vegetation in Maine now, or will it in the future, reflect differences between "acidic sedimentary/meta sedimentary" bedrock and "acidic-granitic" bedrock? Which ELUs or ELU components are redundant? How can ELUs be best grouped for meaningful analysis?
- 3. Each ELU component carries some measure of mapping inaccuracy that is compounded when added with other ELU components. These types of inaccuracies are usually characterized as contextual inconsistencies (e.g., a pixel of flat summit surrounded by pixels of steep slopes) that can best be observed by visual inspection of the data, but may easily be missed in tabular summary figures.
- 4. The scale of ELUs is mis-matched with the typical scale of conservation planning. The issue of how ELUs and ELU groups aggregate into larger landscape units that might correlate more closely with the scale of conservation planning remains largely unexplored. While distinct landscape patterns are often discernable as repeated ELUs or ELU groups, they have not yet been described or quantified, and current conservation planning efforts rely on subjective ways to assess them.


2.4 Isolating ELU Components versus ELUs

Along with the representation of natural communities on conserved lands, one of the objectives of this study is to test the utilization of ELUs for identifying landscapes that may potentially carry ecologically important, rare or under represented natural communities. With

the ELU model, this type of testing may be undertaken by considering ELUs in any of three ways (Figure 7):

- i. As individual ELU components (i.e., elevation, landform & geology), such as "all lands below 800' in elevation";
- ii. As ELUs (i.e., combinations of elevation, landform & geology) such as "low elevation dry flats on mafic/intermediate granite";
- iii. As "Grouped" ELUs (i.e., combinations of assembled ELUs), such as the subset of ELUs that are low and mid elevation slopes on till.

Figure 7: Nesting of ELU Components, ELUs, and Grouped ELUs

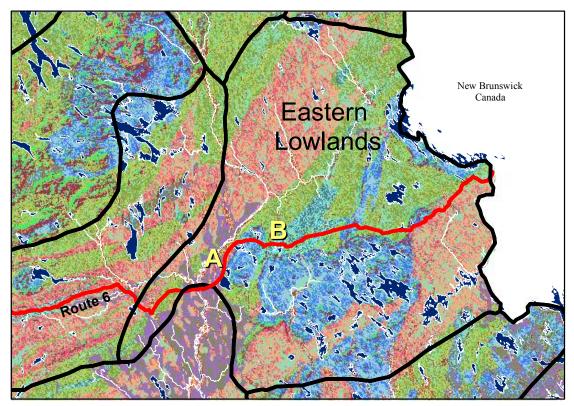
In this model, each of the three ELU components (Elevation, Landform, Geology) is weighted equally. A number of questions arise. For example, which ELU components are the most meaningful and which are the least? Moreover, do ELUs (or even grouped ELUs) represent a sufficiently complex combination of landscape features for identifying or predicting the occurrence of natural communities and ecosystems?

• Which ELU components are most meaningful, and which are least?

The importance of each ELU component depends on the physical setting. As noted in Section 2.3 above, it is questionable that a low-elevation dry flat on "acidic sedimentary-metasedimentary" bedrock would produce different vegetation cover than a low-elevation dry flat on "acidic granitic" bedrock. In either case, the dry flat is the key feature driving the natural community type; the bedrock is likely to be buried beneath tens or hundreds of feet of glacial outwash or till. Consequently, bedrock is important only where it is either (a) exposed, such as cliffs, or (b) influences groundwater discharge, such as a seepage forest or headwater stream. Other "splits" in ELU components present similar challenges. For instance, does the

1700' elevation cutoff represent a meaningful distinction for Maine's vegetation? (Elevation was incorporated into ELUs as a surrogate for climate.) Our testing of a cross-walk between ELU components and known natural communities (Appendix 8.1) indicates that in many cases it is not. Recognition of the varying degrees to which ELU components are meaningful is a key factor in grouping ELUs and ELU components for further analysis.

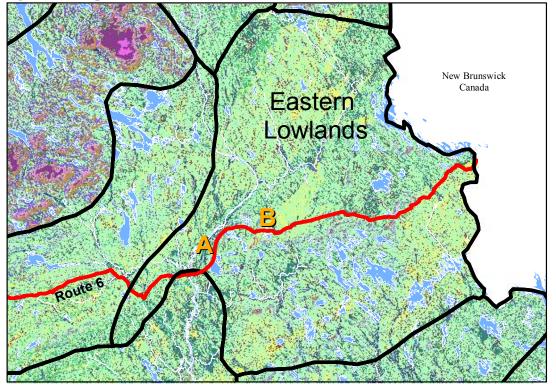
2.5 ELUs versus Grouped ELUs


A total of 504 unique ELUs could theoretically be generated by the multiple combinations of elevation, slope, and geology that occur in Maine. On the ground, there are 368 distinct ELUs that occur. This is more than *three times* the number of natural community types in the state, according to Gawler and Cutko (in press), and more than six times the number of Systems in the National Vegetation Classification. This comparative complexity and fine scale of ELUs suggests that many of these ELUs may not be meaningfully different from one another, as noted previously. It is also possible, on the other hand, that some ELUs may represent distinct or characteristic factors not currently expressed on the landscape because of past land uses (i.e., the landscape has been "homogenized" by past land uses, possibly obscuring differences in potential vegetation).

Nonetheless, some aggregation of ELUs or ELU components is likely necessary to make ELUs more relevant. The utility of grouping becomes apparent through a few exercises. First, in the matrix constructed to associate ELU components with natural communities (Appendix 8.1) most natural communities are predicted to occur across several different geology types. A Beech Birch Maple Forest, for instance, may occur on seven types of surficial or bedrock geology.

A visual image illustrates this issue on a larger scale. A map of Ecological Land Units on Maine's 2.2 million-acre Eastern Lowlands region (Figure 8) indicates pronounced differences within the region. Driving eastward across Route 6, for instance (shown on the map), one would expect to encounter distinct changes as multiple ELUs were crossed. In reality, while some changes are noticeable (e.g., softwood forest on lowland glacial-marine soils at point "A" versus hardwood soils on upland till at point "B"), the landscape is not as distinctly varied as Figure 8 suggests.

Much of the underlying data that drives the colors in Figure 8 relates to bedrock geology – more specifically, differences in calcareous vs. acidic bedrock. However, most of this region is covered by glacial till that may obscure or eliminate any influence of bedrock geology. Therefore, ELUs composed of different bedrock geologic types can be grouped for analytical purposes. Individual polygons of grouped ELUs tend to be much larger than polygons of individual ELUs.



A lengthy exercise was undertaken to collapse the 368 ELUs that occur in Maine into a much smaller subset, based on our knowledge of the physical conditions on which Maine's natural communities occur. Grouping occurred for all factors – elevation, geology, and landform. Spearheaded by Josh Royte of TNC, this effort involved Andy Cutko, Sue Gawler, and Janet McMahon, with GIS services from Dan Coker and Rick Frisina. As a result of this analysis, 25 ELU "groups" were derived (Appendix 8.2).

This number is smaller than both the 368 ELU types and 98 natural community types in Maine. Accordingly, the 25 ELU groups may fail to represent the full diversity of Maine's landscape, but are likely a more realistic portrayal than the 368 ELUs.

The contrast in classification of wetlands by ELU methods and natural community methods explains much of this difference. Over half (51 of 98) of Maine's natural community types are wetlands, and these 51 wetland types fall within 10 ELU groups. This is in part because ELUs (and ELU groups) do not sufficiently capture the broad variation in form and function of Maine's wetlands. Only one landform class (wet flats) applies to all wetland types; therefore, wetland ELUs are distinguished primarily by substrate and elevation. In contrast, wetland natural communities are distinguished by subtle variations in vegetation composition (e.g., low sedges vs. tall sedges) which are influenced by biotic factors including nutrient availability, beaver activity, and seed sources.

As manifested on the landscape, ELU grouping results in a more homogenous landscape. Figure 9 illustrates these grouped ELUs for the Eastern Lowlands. The drive across Route 6 now appears to traverse a landscape of subdued variation that is more reflective of the actual landscape.

Which is most appropriate - an analysis of ELU components, ELUs, or grouped ELUs?

A representational analysis using ELUs can occur at multiple levels:

- i. ELU components in isolation (e.g., what proportion of calcareous bedrock is captured in conservation lands?)
- ii. ELUs (e.g., what proportion of high elevation acidic hilltops is captured in conservation lands?)
- iii. Grouped ELUs (e.g., what proportion of the group of ELUs that typically underlie spruce flats is captured in conservation lands?)

As noted above, in most cases certain ELU components, such as landform, are likely better predictors of natural vegetation than others, such as bedrock. Similarly, some ELUs impart more meaning than others. A high elevation calcareous cliff is expected to support a distinct natural community type, while a mid-elevation, mid-slope acidic till site might support the same vegetation as numerous other ELUs. These factors were taken into consideration in the process of grouping ELUs. Because ELUs were grouped to reflect the expected natural vegetation on the landscape, an analysis of ELU groups is likely to be the most useful. The bulk of analyses in this report focus on ELU groups rather than ELUs or ELU components.

3.0 Natural Community Representation on Conserved Lands

MNAP has classified and distinguished 98 different natural communities and 24 broader ecosystems that collectively cover the state's landscape (Gawler and Cutko *in press*). The range of occurrence of each of these has also been mapped in terms of seven ecological sections across Maine (McMahon, 1990). For any given section, a known suite of communities and ecosystems is expected to occur. To date, MNAP has collected a database of over 1,200 records of exemplary or rare natural communities.

This representational analysis identifies the number of natural community types that occur on conserved land out of the total number of types expected to occur in each of the seven ecological sections. In other words, of the known number of types expected to occur, we identify the proportion that are adequately represented on conserved land.

3.1 Methodology

The analysis is a sequence of simple GIS overlay processes that combines, then summarizes, three data sets:

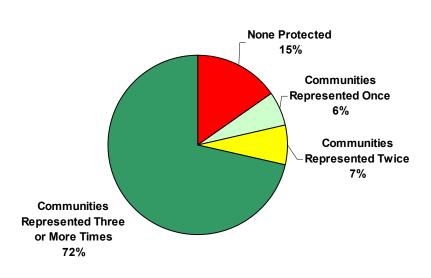
- 1. Natural Communities
- 2. Conserved Lands
- 3. Ecological Sections

To ensure that only viable examples of natural communities were used, a selection of 'A' or 'B' Rank community records was made ("Excellent" or "Good" Estimated Viability). This selection produced approximately 750 examples of natural community occurrences across Maine.

For the purpose of this representational analysis, two 'Types' of conserved land were identified:

Type 1: All conserved land. This is land under any broad form of conservation including all fee owned lands and lands under conservation easement. This selection totaled approximately 3,087,000 acres, or 15% of the area of Maine.

Type 2: Land restricted from timber harvesting. This includes lands designated as Ecological Reserves and lands classified as biodiversity management status GAP 1 or GAP 2 (Crist, 2000). This selection totaled approximately 679,000 acres, or 3% of the area of Maine.


If any part of an "A" or "B" ranked natural community intersected with conservation land, that natural community was considered "adequately represented." This is a low threshold for representation and does not incorporate redundancy of natural communities (i.e., two or more examples), which may be desirable from a conservation standpoint. Moreover, it only indirectly incorporates buffering (surrounding landscape context), as a factor in the occurrence rank.

3.2 Results

Statewide:

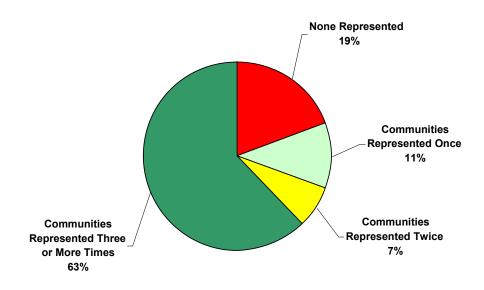
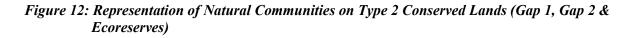

For the state as a whole, only 15 of 98 natural community types have NO protected 'A' or 'B' ranked examples on Type 1 conservation lands, and the overwhelming majority of natural community types have multiple examples (Figure 10). Only two of the fifteen natural community types with no representation (Balsam Poplar Floodplain Forest, Hardwood Seepage Forest) are forested types. The former occurs on a few limited rivers in northern Maine, and the latter is likely under-surveyed and may indeed occur on conservation lands. Not surprisingly, the representation of natural communities on conserved land within each region is directly related to the amount of land in conservation.

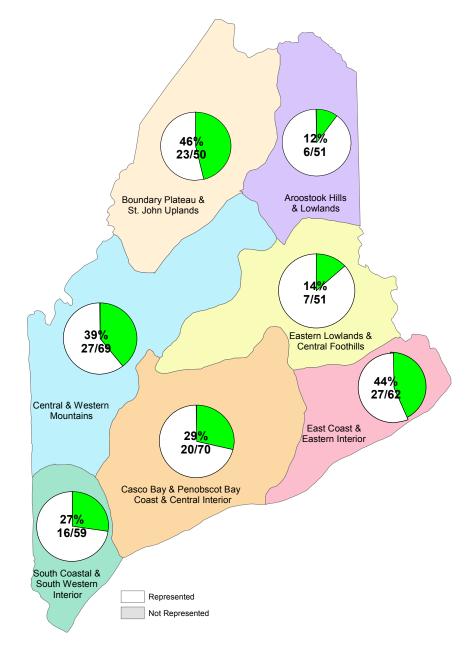
Figure 10: Proportions of the State's 98 Natural Community Types with Good Examples on Type 1 Conserved Lands (All Conserved Lands)

Representation and redundancy are more lacking on Type 2 conservation lands (Figure 11). Nearly one-fifth (19 of 98) of the state's natural community types have no protected A or B ranked examples on Gap 1, Gap 2 or Ecological Reserve lands. Four forested types are included in this "non-protected" list: Balsam Poplar Floodplain Forest, Hardwood Seepage Forest, Jack Pine Forest, and Pitch Pine Heath Barren. Jack Pine Forest occurs on protected (Gap 3) lands near No. 5 Bog, and Pitch Pine Heath Barrens occurs on protected (Gap 3) lands in the town of Brunswick.

Figure 11: Proportions of the State's 98 Natural Community Types with Good Examples on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

By Geographic Section:


A more meaningful measure of natural community representation involves geographic representation within each of Maine's seven ecological sections (Figure 3). For example, if Beech – Birch – Maple Forest occurs in each of the seven sections, how many of these sections have protected examples within conservation lands? Geographic representation offers a measure of redundancy and also accounts for geographic variation within natural community types (and associated variation in animal assemblages) across the state.


The combination of natural community types and ecological sections where they occur results in 412 possible natural community types occurring across all sections (i.e., by this method of accounting, a Beech – Birch – Maple Forest counts for seven sections because it occurs in all seven sections; Northern White Cedar Swamp would count for five sections if it occurs in five, etc.). For the state as a whole, 126 of 412 (31%) natural communities are represented on Type 2 conserved lands in the sections where they occur. A breakdown of natural communities into four broad types is listed in Table 2.

Broad Community Type	Number Represented on Type 2 Conserved Lands	Communities known to Occur in all Sections	Representation
Forested Uplands	51	135	38%
Forested Wetlands	23	77	30%
Non Forested Uplands	17	48	35%
Non Forested Wetlands	35	152	23%

Table 2: Statewide Community Representation on Type 2 Conserved Lands

Figure 12 indicates the number of natural community types represented on Type 2 conserved lands for each ecological section. The figures are presented as a proportion of the number of communities known to occur throughout the section. For example, in the Aroostook Hills and Lowlands section, 6 of 51 community types known to occur are represented on Gap 1 or Gap 2 lands or Ecological Reserves.

The following figures show the proportional representation broken down into the four broad community types for each section.

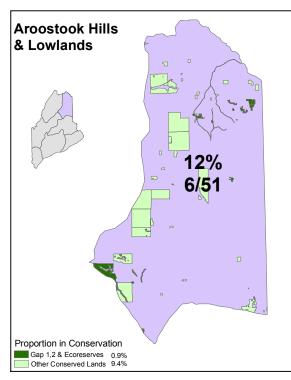
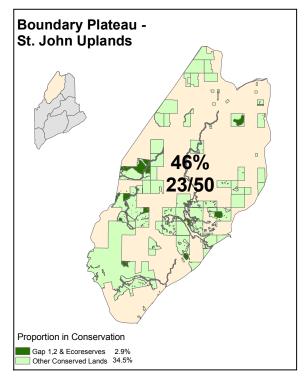
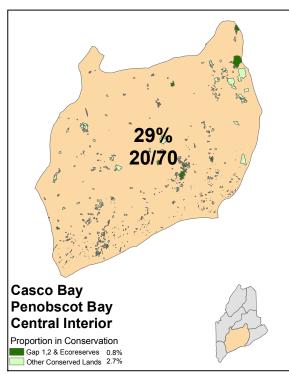



Figure 13: Aroostook Hills & Lowlands – Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

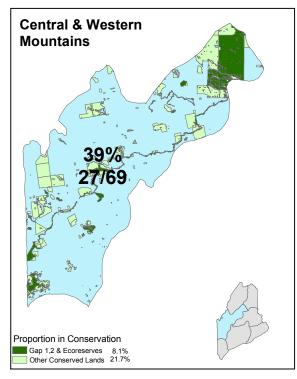
	None	< 25%	25 - 50%	> 50%
Forested Uplands	0/16			
Forested Wetlands			4/10	
Non Forested Uplands	0/3			
Non Forested Wetlands		2/22		

Community Representation Breakdown


Figure 14: Boundary Plateau / St. John Uplands – Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

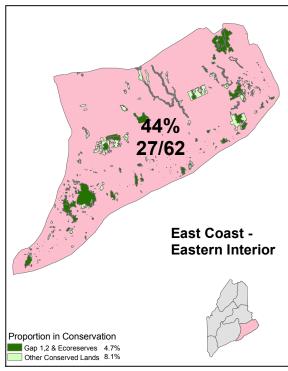
Community Representation Breakdown

	None	< 25%	25 - 50%	> 50%
Forested Uplands				11/15
Forested Wetlands			2/8	
Non Forested Uplands				4/5
Non Forested Wetlands		6/22		


Figure 15 : Casco Bay / Penobscot Bay / Central Interior - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

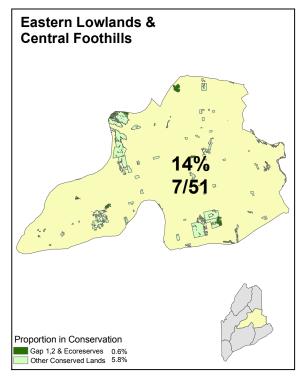
Community Representation Breakdown

	None	< 25%	25 - 50%	> 50%
Forested Uplands			6/24	
Forested Wetlands			6/14	
Non Forested Uplands			2/8	
Non Forested Wetlands			6/24	


Figure 16 : Central & Western Mountains – Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

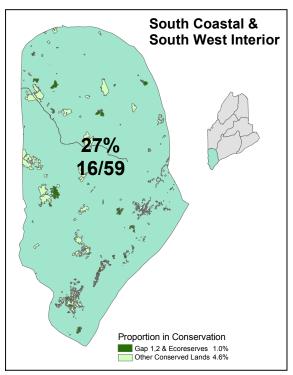
Community Representation Breakdown

	None	< 25%	25 - 50%	> 50%
Forested Uplands				13/23
Forested Wetlands			3/12	
Non Forested Uplands				7/13
Non Forested Wetlands		4/21		



Community Representation Breakdown

	None	< 25%	25 - 50%	> 50%
Forested Uplands				12/20
Forested Wetlands		1/9		
Non Forested Uplands			3/10	
Non Forested Wetlands			11/23	


Figure 18: Eastern Lowlands & Central Foothills - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Community Representation Breakdown

	None	< 25%	25 - 50%	> 50%
Forested Uplands		2/18		
Forested Wetlands		3/11		
Non Forested Uplands	0/3			
Non Forested Wetlands		2/19		

Figure 19: South Coastal & South West Interior - Community Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

	None	< 25%	25 - 50%	> 50%
Forested Uplands			7/19	
Forested Wetlands		4/13		
Non Forested Uplands		1/6		
Non Forested Wetlands		4/21		

Community Representation Breakdown

3.3 Discussion

The regional maps indicate that forested uplands show the highest proportion of community types in Type 2 land protection (38%), while non-forested wetlands show the lowest (23%). This is encouraging from a conservation perspective, since forested uplands are probably more threatened than are open wetlands.

As the figures above indicate, geographic representation by section closely mirrors the amount of protected land in each section. Sections with comparatively high proportions of conservation land, such as the Boundary Plateau – St. John Uplands and Central – Western Mountains (northwest Maine), have comparatively higher representation of natural communities. Moreover, more than half the upland forest types are represented in these two regions.

In contrast, three sections with comparatively little acreage of Gap 1 and 2 conservation land or Ecological Reserves (Aroostook Hills and Lowlands, Eastern Lowlands, South Coast – South Western Interior) have the poorest representation of natural communities. Forested uplands are particularly under-represented in these protected lands, with 0%, 11%, and 37% of the community types represented, respectively.

The data used to generate these tables and figures also allow us to generate specific lists of natural communities not adequately protected in each region. These underlying data may be used as a "wish list" when evaluating future conservation options to add missing natural communities to the state's portfolio of conservation lands.

4.0 ELU Representation on Conserved Lands

Representation of ELUs on conserved lands was conducted for each of:

- i. Individual ELU components
- ii. Individual ELUs
- iii. Grouped ELUs

As noted in the Project Objectives, there are two key criteria of a conservation strategy built on adequate representation of ELUs:

- ELU components, ELUs, or grouped ELUs should occur in the same proportion on conserved lands as they do in the broader region (*Representation Criterion*)
- At least one of each ELU (or ELU component or grouped ELU) that occurs in the region should be captured in conservation land (Noah's Ark Criterion)

We approached the concept of ELU "representation" relative to each biophysical section. To determine what is adequately captured ("represented") within conservation lands, we selected a cut-off of 50% representation; that is, a particular ELU should be at least half as common on conservation lands as it is in the region as a whole. For example, if a particular ELU component, ELU, or ELU group comprises 20% of the biophysical region, in order for it to be adequately represented, it should comprise *at least* 10% of conservation lands. As noted previously, this concept of representation does not factor in a minimum acreage considered necessary for a particular ELU or ELU group to support a viable natural community. (This issue is discussed further in Section 4.3, "Adequate Representation vs. Adequate Protection.")

4.1 Methodology

The GIS approach was similar to that employed in the natural community representation analysis: a sequence of overlaying and then summarizing three data sets:

- 1. ELUs
- 2. Conserved Lands
- 3. Ecological Sections

In contrast to the natural community representation, all processing was performed in a raster environment.

By design, the ELU data set contains both ELUs and ELU components, so the analysis of both of these was achieved through one combination of the data sets listed above. The analysis of grouped ELUs required the extra step of remapping the 368 ELUs into 25 groups (Appendix 8.2) and then performing the overlays. ELUs under agricultural or developed land were not considered in this analysis.

4.2 Results

In the same fashion as the representational analysis of natural communities, this analysis was also conducted on two types of conserved land:

Type 1: All conservation lands. Land under any broad form of conservation including all fee owned lands and lands under conservation easement.

Type 2: Land restricted from timber harvesting. Lands designated as GAP 1 or GAP 2 and Ecological Reserves.

However, in contrast to the analysis of natural communities, the analysis of ELUs involved three different levels of investigation and produced a considerably higher volume of results to examine.

For the purpose of brevity, results for ELUs and Grouped ELUs on Type 1 conserved lands have not been summarized in this section while their results on Type 2 conserved lands have been summarized in maps. Full details of all analysis results are provided in Appendices 8.3, 8.4 and 8.5. Table 3 indicates how all ELU representation analysis results are presented in this report.

	Appendix	(Type 1) All Conservation Lands	(Type 2) Gap 1, 2 & EcoReserves
ELU Components	8.3	Summarized Below	Summarized Below
ELUs	8.4	Appendices only	Table 4, Figure 20
Grouped ELUs	8.5	Appendices only	Figures 21 - 28

Table 3: Presentation of ELU Representational Analysis Results

ELU Components: What's Missing?

The list below is a sample (not all inclusive) of physical features that are *not* captured within Maine's conservation lands.

Aroostook Hills and Lowlands

- There is NO conservation land over 1700' elevation (661 acres in the region).
- There are NO lands with fine sediment in conservation land (6,634 acres in the region)

Boundary Plateau / St. John Uplands

• There are NO lands with fine sediment in conservation (21,239 acres in the region)

• There are NO lands with calcareous bedrock in Gap 1 or 2 conservation (20,620 acres in the region).

Central and Western Mountains

- In comparison to its proportion of the region as a whole, there is five times more high elevation (>4000') terrain in conservation land, and thirteen times more in Gap 1 or Gap 2 land. Conversely, there is about half as much low elevation terrain (<800') in conservation land as in the region as a whole.
- Lands with fine sediment are significantly under-represented on conservation land and do not occur at all on Gap 1 or Gap 2 conservation land.

East Coast & Eastern Interior

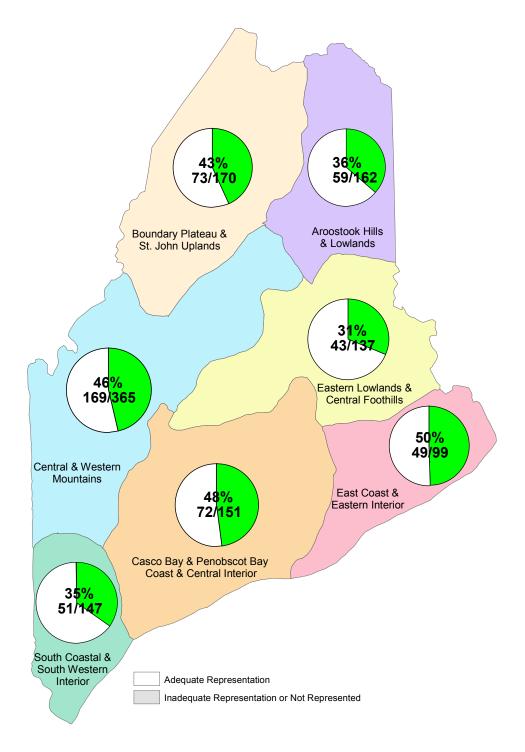
• Lands with moderately calcareous or calcareous bedrock are significantly underrepresented on conservation land and do not occur at all on Gap 1 or Gap 2 conservation land.

Eastern Lowlands & Central Foothills

- There are NO cliffs in conservation (only 16 acres in the region).
- There are NO lands with mafic or ultramafic bedrock in Gap 1 or Gap 2 conservation (51,356 acres in the region).

ELUs

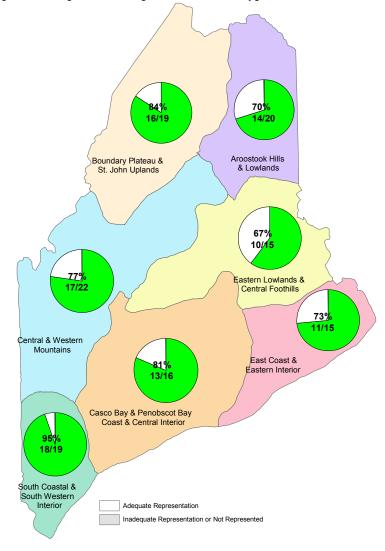
Of the 368 ELUs found across Maine, 74 (20%) are not represented on any Type 2 conserved land and 32 (9%) are not represented on any Type 1 conserved lands. Table 4 and Figure 20 indicate the number of ELUs adequately represented on Type 2 conserved land for each ecological section according to the *50% representation criterion* described above.


Table 4: Representation of ELUs on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

	Aroostook Hills & Lowlands	Boundary Plateau / St.John Uplands	Casco Bay- Penobscot Bay	Central & Western Mountains	Eastern Lowlands & Central foothills	East Coast & Eastern Interior	South Coast & Southern Interior
Adequately ¹ Represented	59	73	72	169	43	49	51
NOT Adequately ² Represented	35	17	25	101	12	13	27
NOT Represented	68	80	54	95	82	37	69
Total ELUs	162	170	151	365	137	99	147

¹ At least 50% as common on Type 2 conservation lands as it is in the region.

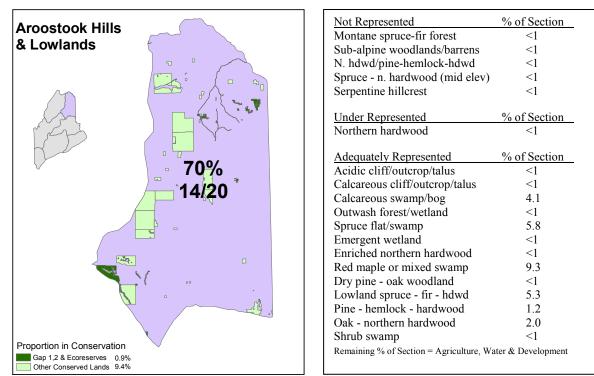
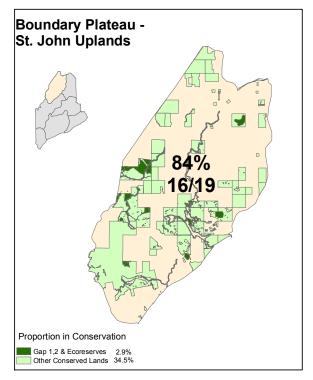
² Between 0 and 50% as common on Type 2 conservation lands as it is in the region.


Figure 20: Adequate ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Grouped ELUs

When the 368 ELUs have been collapsed into 25 more meaningful "groups" (named according to associated vegetation types and/or landscape positions) representation increases (Figure 21). In the South Coastal and South Western Interior region for example, 51 of 147 (35%) of *ELUs* are adequately represented on Type 2 conservation land, but almost all (18 of 19) of ELU *groups* are adequately represented. In fact, each of the 25 ELU groups is represented on Type 2 conservation lands across Maine, and most of the ELU groups are adequately represented (*Representational Criteria*) in each of the seven regions. Statewide, 79% (99 of 126) ELU groups are adequately represented are generally uncommon in each region, typically accounting for less than 1% of the landscape. Figure 21 indicates the proportion of grouped ELUs represented on Type 2 lands. Figures 22 - 28 indicate the representation of ELU groups are not represented, inadequately represented or adequately represented for each region.

Figure 21: Adequate Grouped ELU Representation on Type 2 Conserved Lands

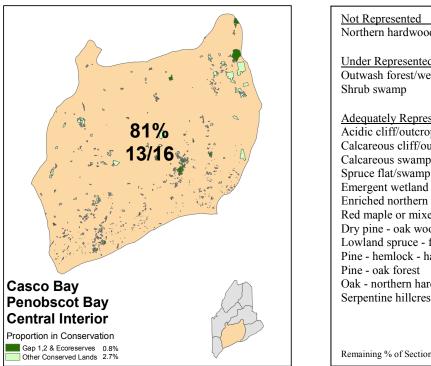
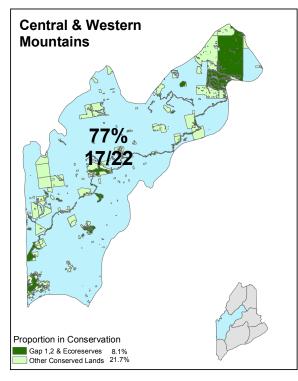

Figure 22: Aroostook Hills & Lowlands - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Figure 23: Boundary Plateau / St.John Uplands - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)


Under Represented	% of Section
Calcareous cliff/outcrop/talus	<1
Calcareous swamp/bog	<1
Shrub swamp	<1
-	
Adequately Represented	% of Section
Acidic cliff/outcrop/talus	<1
Outwash forest/wetland	1.2
Spruce flat/swamp	8.4
Enriched northern hardwood	<1
Emergent wetland	<1
Red maple or mixed swamp	7.9
Montane spruce-fir forest	<1
Sub-alpine woodlands/barrens	<1
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	19.3
Pine - hemlock - hardwood	45.8
Pine - oak forest	<1
N. hdwd/pine-hemlock-hdwd	<1
Northern hardwood	2.1
Spruce - n. hardwood (mid elev)	<1
Oak - northern hardwood	7.1
Remaining % of Section = Agriculture, Wa	ater & Development

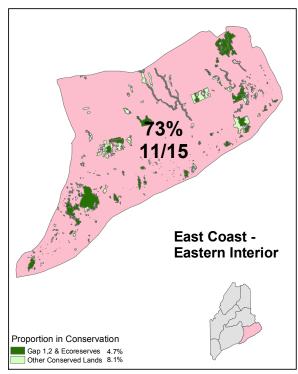

Not Represented	% of Section
Northern hardwood	<1
Under Represented	% of Section
Outwash forest/wetland	1.1
Shrub swamp	<1
Adequately Represented	% of Section
Acidic cliff/outcrop/talus	<1
Calcareous cliff/outcrop/talus	<1
Calcareous swamp/bog	3.0
Spruce flat/swamp	4.3
Emergent wetland	<1
Enriched northern hardwood	<1
Red maple or mixed swamp	7.7
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	<1
Pine - hemlock - hardwood	50.3
Pine - oak forest	4.4
Oak - northern hardwood	<1
Serpentine hillcrest	<1
Remaining % of Section = Agriculture, V	Vater & Development

Figure 25: Central & Western Mountains - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

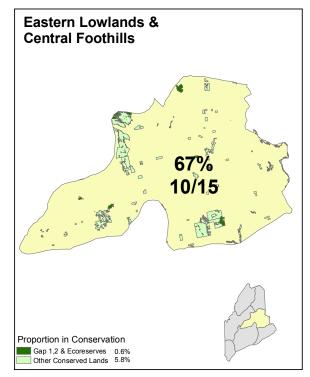

Not Represented	% of Section
Serpentine hillcrest	<1
Under Represented	% of Section
Calcareous swamp/bog	<1
Emergent wetland	<1
N. hdwd/pine-hemlock-hdwd	2.4
Shrub swamp	<1
Adequately Represented	% of Section
Alpine	<1
Acidic cliff/outcrop/talus	<1
Calcareous cliff/outcrop/talus	<1
Outwash forest/wetland	1.2
Spruce flat/swamp	3.8
Enriched northern hardwood	<1
Red maple or mixed swamp	6.4
Montane spruce-fir forest	6.8
Sub-alpine woodlands/barrens	4.7
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	13.7
Pine - hemlock - hardwood	30.0
Pine - oak forest	1.9
Spruce - n. hardwood (mid elev)	5.4
Northern hardwood	4.5
Oak - northern hardwood	9.4
Sub-alpine wetland	<1
_	
Remaining % of Section = Agriculture, Wa	ater & Development

Figure 26: East Coast / Eastern Interior - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

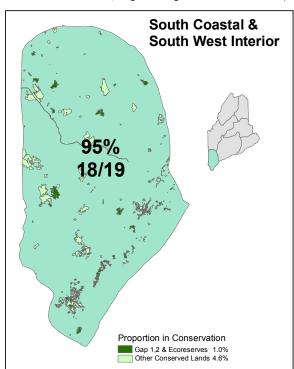

Not Represented	% of Section
Calcareous swamp/bog	<1
Northern hardwood	<1
Under Represented	% of Section
Calcareous cliff/outcrop/talus	<1
Outwash forest/wetland	2.3
Adequately Represented	% of Section
Acidic cliff/outcrop/talus	<1
Spruce flat/swamp	5.3
Emergent wetland	1.3
Enriched northern hardwood	<1
Red maple or mixed swamp	11.9
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	<1
Pine - hemlock - hardwood	54.0
Pine - oak forest	4.0
Oak - northern hardwood	<1
Shrub swamp	<1
Remaining % of Section = Agriculture, V	Water & Development

Figure 27: Eastern Lowlands & Central Foothills - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Not Represented	% of Section
Acidic cliff/outcrop/talus	<1
Calcareous cliff/outcrop/talus	<1
Northern hardwood	<1
Under Represented	% of Section
Enriched northern hardwood	<1
Shrub swamp	<1
I.	
Adequately Represented	% of Section
Calcareous swamp/bog	6.4
Outwash forest/wetland	1.1
Spruce flat/swamp	7.0
Emergent wetland	<1
Red maple or mixed swamp	7.9
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	<1
Pine - hemlock - hardwood	62.4
Pine - oak forest	3.0
Oak - northern hardwood	<1
Remaining % of Section = Agriculture, W	ater & Development

Figure 28: South Coastal & South West Interior - Grouped ELU Representation on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Not Represented	% of Section
Shrub swamp	<1
Under Represented	% of Section
Adequately Represented	% of Section
Acidic cliff/outcrop/talus	<1
Calcareous cliff/outcrop/talus	<1
Calcareous swamp/bog	1.7
Outwash forest/wetland	5.2
Spruce flat/swamp	4.9
Emergent wetland	1.4
Enriched northern hardwood	<1
Red maple or mixed swamp	11.6
Montane spruce-fir forest	<1
Sub-alpine woodlands/barrens	<1
Dry pine - oak woodland	<1
Lowland spruce - fir - hdwd	<1
Pine - hemlock - hardwood	46.9
Pine - oak forest	5.2
N. hdwd/pine-hemlock-hdwd	<1
Spruce - n. hardwood (mid elev)	<1
Northern hardwood	<1
Oak - northern hardwood	<1
Remaining % of Section = Agriculture, Wa	ter & Development

4.3 Discussion

ELUs vs. Grouped ELUs

Grouped ELUs are better represented because they "homogenize" numerous ELUs into spatially larger units, and it is more likely that some part of these larger, homogenized units will be captured in conservation land. Conversely, because ELUs are much larger in number and smaller in scale, and conservation lands account for only a small fraction of any given region, individual ELUs are more likely to be omitted from conservation lands.

Adequate Representation vs. Adequate Protection

The fact that 18 of 19 ELU groups are "adequately" represented in the South Coastal and Southwest Interior Region (southern Maine) appears to challenge the common perception that conservation lands are lacking in that part of the state. Moreover, it contrasts with our earlier finding that natural communities are poorly represented (27%) on conservation lands in that same region.

This apparent difference is explained by our methodology and by inherent differences between ELUs and natural communities. Our ELU analysis indicates that conservation lands have successfully captured the diversity of landscape types in that region, ranging from coastal marshes to hilly terrain to sand flats, *in similar proportions as they occur in the region*. As noted previously, this analysis is *relative* rather than *absolute*, providing information on only presence/absence and relative proportions of ELUs. These data lack important information about the size and viability of the habitats that are protected. In contrast, size and viability have been accounted for in our natural community analysis by factoring in only A and B ranked examples of natural communities. As a result, the ELU and ELU group *representation* figures should not be construed to indicate adequate *protection*. To sufficiently capture the viability/functionality of ELUs and ELU groups, one would need to assess the size of each grouped ELU polygon (or polygon cluster) relative to its natural patch size (i.e., small patch, large patch, matrix) and appropriate targets for acreage and number of occurrences (e.g. TNC methodology) for those types in the state or region. This task is beyond the scope of this initial investigation but is listed in Section 6.4, "Additional Research Needs and Questions."

5.0 Correlation of ELUs with Mapped Natural Communities: Testing the Predictive Power of ELU Components

A key underlying question related to ELUs is the degree to which they predict natural vegetation. Can ELUs potentially be used as surrogate for ecosystems and communities when the relationship between biotic factors and ELUs is better understood? More specifically, can the relationships be used to evaluate the potential distinctiveness or rarity of a given landscape or to identify priorities for future inventory or conservation planning efforts?

Cross-walking ELUs to Natural Communities

Results obtained from comparing ELUs and ELU components with existing mapped natural community data were used to develop several versions of "crosswalks" that link ELUs and natural communities. These crosswalks were in turn used to group ELUs for representational analyses in Section 4.

Appendices 8.1 and 8.6 show some examples of such crosswalks. Appendix 8.1 is a cross-walk between ELU *components* and natural communities, and Appendix 8.6 is a cross-walk between ELUs and natural communities (according to Maine's classification). Linkages between ELU components, ELUs, and natural communities were used to direct the process of collapsing of 368 ELUs into 25 ELU groups.

5.1 Methodology

To attempt a preliminary assessment of the correlation between individual ELU components and natural communities, a matrix was constructed (Appendix 8.1) to predict the elevation, landform, and geologic type with which each natural community type would "naturally" be associated. For instance, we predicted that a Brackish Tidal Marsh would occur on only one type of landform (wet flats), one elevation classes (less than 800'), and multiple geologic types (since bedrock geology is not strongly correlated with the formation of tidal

marshes). Similarly, a wide-ranging natural community such as a Beech Birch Maple Forest could occur on eleven different landforms, three elevation classes, and seven geologic types.

To account for some uncertainty, we created three categories of prediction. One category indicted that a natural community was *likely* to occur on a particular ELU component. A second category indicated that a natural community *was likely to or could possibly* occur on a particular ELU component. A third category indicated that a natural community was *unlikely* to occur on a particular ELU component.

A key difference between this approach and others undertaken elsewhere in New England is that we assumed a particular ELU type could be associated with one *or more* natural community types. This "one-to-many" approach is a reflection of two factors. First, we recognize the dynamic character of natural communities, as they are influenced by natural disturbances at varying geographic and temporal scales, differing seed sources, and other biological factors not explained by ELUs alone. Second, we recognize some uncertainty (or perhaps lack of confidence!) in assigning a specific natural community for each location on the ground. Other ELU analyses have assumed a one-to-one relationship; that is, for each location on the ground, only one natural community could occur under natural conditions.

This difference in approaches dissolves as ELUs and ELU *components* are collapsed into larger groups. As discussed above, our predictions of correlations between natural community groups and ELU groups assume a one to one relationship; that is, one distinct set of natural communities is associated with only one ELU group.

Next, a GIS analysis was conducted to test the "precision" of our predictions. ELUs (and their underlying components) were matched with nearly 1,000 mapped natural communities. Within each natural community polygon, the largest portion of any particular ELU component (e.g., the most abundant bedrock type within the polygon) was compared to the "predicted" ELU component (e.g., acidic-granitic bedrock).

5.2 Results

ELU Components and Natural Communities

Based on this analysis, each of the three ELU components (slope, elevation, geology) was associated with the appropriate natural communities at least 80% of the time. Figures 29, 30, and 31 illustrate these relationships.

- Elevation had the strongest correlation. As Figure 29 indicates, 97.2% of natural community occurrences fell within the "likely" elevation category, and 98.8% fell within the "possible" category.
- Landform and geology had similar correlations to natural communities (Figures 30 and 31).

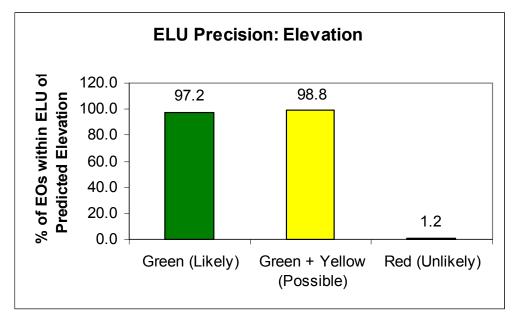


Figure 29: Precision of Elevation in predicting Natural Community Type

Figure 30: Precision of Landform in predicting Natural Community Type

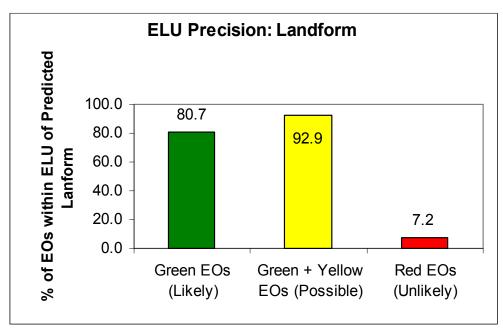
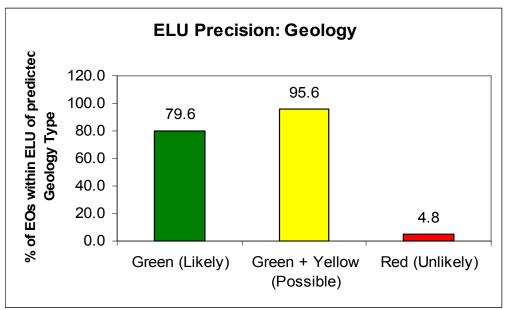
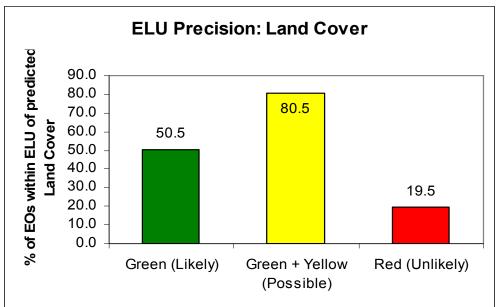




Figure 31: Precision of Geology in predicting Natural Community Type

A prediction was also made between the national Medium Resolution Land Cover (MRLC) data set and natural communities (land cover is an add-on component to ELU where ELU + Land Cover = "Systems"). MRLC land cover is based on satellite imagery from the early 1990s and includes approximately 12 categories in Maine. Interestingly, this feature was far less precise than the three physical components of ELUs. Only half of the natural communities fell within a land cover type in which they were predicted to occur (Figure 32). This is likely caused by the transitional character of the state's land cover, particularly in the northern tier of the state, coupled with the out-dated source of the information.

Figure 32: Precision of Satellite-based Land Cover (MRLC) in predicting Natural Community Type

ELU Groups and Natural Communities: A Case Study of the Bigelow Reserve

As noted previously, we collapsed 368 ELUs into 25 ELU groups to depict a more workable (and potentially more meaningful) correlation between physical features and natural communities. To test this correlation, we overlaid ELU groups and natural communities on the Bigelow Ecological Reserve, a 10,000+ acre tract that has two desirable features for this type of analysis: (1) natural communities have been mapped in "wall to wall" fashion from air photos, and (2) the Bigelow Reserve exhibits a range of landform and elevation that creates a wide variety of ELUs. Figure 33 depicts the results of this overlay, and Appendix 8.7 indicates how successfully ELU groups predict natural communities for the Bigelow Ecological Reserve.

A true 1:1 correspondence would not be expected because of the different scales of classifications used (25 ELU groups vs. 98 natural community types). It is likely one ELU group would be associated with two or more natural community types. For groups and natural communities clearly defined by landform or elevation, the association is strong. For example, 96% of the "Alpine" ELU group is associated with one of three appropriate natural communities: Crowberry – Bilberry Open Summit Bald (24%), and Spruce – Fir – Birch Krummholz (27%), and Fir – Heartleaf Birch Sub-alpine Forest (45%). Similarly, 89% of the "Sub-alpine Woodlands and Barrens" ELU group is associated with one of two appropriate natural communities: Fir – Heartleaf Birch Sub-alpine Forest (79%) and Spruce – Fir – Birch – Krummholz (10%). Two-thirds (66%) of the "Northern Hardwood" ELU group is associated with Northern Hardwood Forest, and one quarter (23%) is associated with "Spruce – Northern Hardwood Forest."

Other associations are not as strong for a variety of reasons, including scale and geographic specificity. The "Calcareous Swamp/Bog" ELU group, for example, accounts for a very small portion of the Bigelow Reserve (12 acres total), where it is associated mostly with two upland natural community types. A closer inspection of this ELU group reveals that it is mapped as a series of linear pixels, a few acres in size, along stream drainages. At this small scale, these locations are not large or distinct enough to support wetland natural communities mappable from air photos, although there may be subtle distinctions or transitions on the ground. Similarly, most of the "Acidic Cliff/Outcrop/Talus" ELU group is associated with Fir – Heartleaf Birch Sub-alpine Forest, likely because the acidic cliffs portrayed by ELU groups are scattered pixels too small (0.16 acre) to be captured by natural community maps, which had a minimum mapping size of 1 acre.

Another explanation for poor correlations is that the ELU groups were created as a statewide layer. When applied to a particular location on the ground, geographic differences between northern and southern Maine may not be adequately reflected. A modification of the ELU groups has been made to account for these regional differences, as well as aspect (northwest vs. southeast) and is expressed by a further splitting of ELU types, as shown in Appendix 8.2. For example, the "Low Elevation – Cool" ELU group is predicted to support Lowland Spruce – Fir – Hardwood Forest across all aspects in northern Maine and Northern Hardwood Forests on northwest facing slopes in Southern Maine.

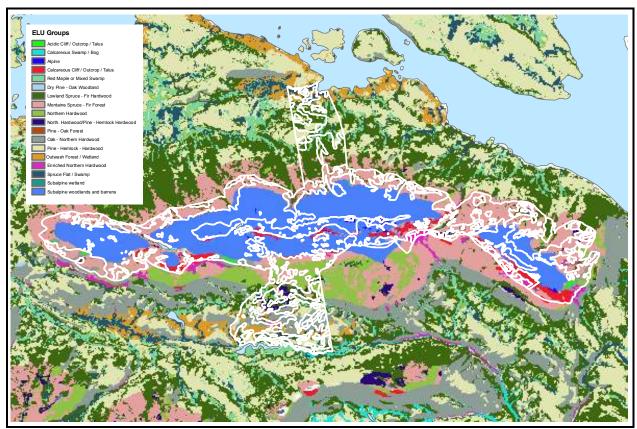


Figure 33: ELU Groups and Natural Communities on the Bigelow Ecological Reserve

5.3 Discussion

The strong correlation between ELU components and natural communities attests to the predictive capacity of ELUs. It also reflects the conservative "one to many" approach we took, assuming that one ELU component might be associated with several natural community types, depending on other ELU components, natural disturbance history, and other factors. Not surprisingly, elevation had the strongest correlation, since many communities (coastal marshes, alpine areas) are easily predicted to occur in distinct elevation zones.

There are several possible reasons for cases in which natural communities are NOT associated with the correct ELU component. First, the natural community might not be mapped accurately (many of the polygons were mapped prior to GPS technology). Second, where a natural community polygon crossed several ELUs, only the majority ELU within that polygon was used for analysis. As a result, a polygon crossing five ELUs might be linked to an ELU that accounts for only 30% of that polygon.

The poor correlation of the land cover data set to natural communities is likely caused by the above factors but is enhanced by the transitional character of the state's land cover, particularly in the northern tier of the state.

6.0 Conclusions

6.1 What is lacking from Maine's Conservation Portfolio?

Natural Communities

As noted in Section 3.2, fifteen of the state's 98 natural community types are not adequately represented (no A or B examples) on any conservation lands, and nineteen are not represented on Gap 1 or 2 lands. Table 5 lists these nineteen types; twelve of the nineteen types are rare (S1 - S3) and are listed in bold. It is also important to note that some of the common types (e.g., Open Water Marsh, Pickerelweed Marsh, Bulrush Marsh) likely occur on conservation lands but have not been documented as A or B ranked examples.

Table 5: Community Types not represented on Type 2 Conserved Lands (Gap 1, Gap 2 &
Ecoreserves)

1	Balsam Poplar Floodplain Forest
2	Blueberry Barren
3	Bulrush Marsh
4	Cattail Marsh
5	Circumneutral Pond
6	Coastal Beach
7	Coastal Sedge Bog
8	Dune Grassland
9	Hardwood Seepage Forest
10	Jack Pine Forest
11	Maritime Slope Bog
12	Mid-elevation Bald
13	Open Cedar Fen
14	Open Water Marsh
15	Pickerelweed Marsh
16	Pitch Pine - Heath Barren
17	Rivershore Shrub Thicket
18	Riverwash Sand Barren
19	Tall Shrub Fen

Only two forested types (Balsam Poplar Floodplain Forest and Hardwood Seepage Forest) are not represented on any type of conservation land, and four forested types (the two listed above plus Pitch Pine – Heath Barren and Jack Pine Forest) are not represented on Gap 1 or 2 conservation lands.

A more meaningful assessment of natural community protection incorporates geographic representation. For the state as a whole, good examples of only 126 of 412 (31%) of natural communities or ecosystems are represented in sections where they occur. Not surprisingly, regions of the state with comparatively less conservation land exhibit poorer representation of natural communities.

Grouped ELUs

Using the grouped ELU representation (Figure 21) as an indication, Maine's limited conservation lands have been very successful at capturing landscape diversity. Each of the 25 ELU groups is captured at least once on conservation lands somewhere in Maine, and conservation lands adequately capture an average of 78% of the ELU groups expected to occur within each region. Moreover, each region has at least 2/3 of the expected ELUs represented on Type 2 conservation lands. ELU groups that are under-represented vary by region but are typically uncommon types, accounting for less than 1% of each region's landscape.

As discussed previously, however, the relative/proportional nature of these ELU figures and our assumptions for "adequate representation" do not allow full assessment of the question 'how much is enough'? For example, if the composition of the protected lands is entirely reflective of the surrounding landscape, but only 3% of the land is protected, is that enough? For small and large patch natural communities (e.g., calcareous cliffs, red maple swamps), perhaps it is enough, but the scale necessary to protect matrix forming natural communities is not accommodated by this representational strategy.

A Geographic Perspective

Not surprisingly, natural communities are most poorly represented in regions with the lowest amount of conservation lands – Southern Maine, the Aroostook Hills and Lowlands, and the Eastern Lowlands and Foothills. Conversely, natural communities are comparatively well represented in the St. John Uplands and Central and Western Mountains, regions with the most conservation land. This pattern of conservation ownership holds true for both conservation lands as a whole and the restricted subset of conservation lands set aside from timber harvesting.

6.2 Comparing Representation of ELUs and Natural Communities

Figure 34 compares the effectiveness of land conservation at protecting representative ELUs (both individual and grouped) and natural communities. The advantage of the natural community approach is that it is direct: while ELUs may be considered surrogates for representing biodiversity, natural communities are often targets in themselves.

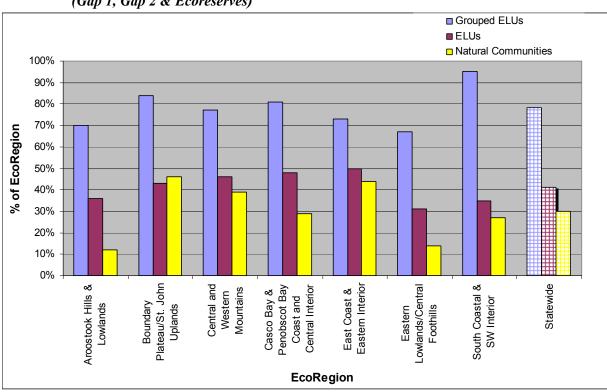


Figure 34: A Comparison of Representational Analyses on Type 2 Conserved Lands (Gap 1, Gap 2 & Ecoreserves)

Why are the representation figures so different for ELUs, grouped ELUs, and natural communities? The differences between representation of ELUs and grouped ELUs are discussed in Section 4.3 ("homogenized" ELU groups are larger in scale and therefore more likely to be captured within conservation lands). The disparity between ELU representation and natural community representation may be explained by several factors.

- First, as noted in Section 4.3, ELU representation involves relative proportions rather than absolute sizes, so only presence/absence and proportions of ELUs are sufficient to be considered "represented."
- Natural community representation, on the other hand, is based on "exemplary" natural communities documented by MNAP. To be considered "viable" (A or B ranked) these mapped communities exceed minimum thresholds of size, condition, and landscape context. In this regard, natural community representation may be a more accurate means of evaluating biodiversity protection.

• Natural community representation is based on inventory data, which is not uniform and far from complete statewide. ELUs, in comparison, have been mapped in "wall-to-wall" coverage for the state. A different measure of natural community representation, parallel to ELU representation, would involve presence/absence and proportions of ALL natural communities. This method would not capture the viability thresholds noted above. In addition, this type of natural community representation is not feasible because "wall-to-wall" natural community information on all protected lands is not available for comparison.

6.3 Applying ELUs to Conservation Planning

Ecologists are often asked to evaluate proposed land protection projects with regard to what ecological values they might add to the state's portfolio of conservation lands. The data developed for this project now enable us to create maps and lists of natural communities and ELUs that both (a) occur on a subject property, and (b) are under-represented in Maine or in a particular region.

This capability is currently being used to evaluate hypothetical conservation options on two large ownerships in Maine. For conservation options on a hypothetical ownership that covers five ecological Sections of Maine, for example, we have generated both a map and table (Table 6 and Figure 35) that indicate ELU groups that occur on those lands and are not sufficiently protected in the region. This information may be used in conjunction with natural community data (from ground-truthing or air photo interpretation) to guide conservation and acquisition strategies.

ELU Group	Aroostook Hills & Lowlands-	Casco Bay- Penobscot Bay Coast & Central Interior	Central & Western Mountains	East Coast & Eastern Interior	Eastern Lowlands & Central Foothills
Bare rock/cliff					12.23
Calc bare rock				4.23	422.91
Calcareous swamp/bog			4153.79	475.47	
Outwash					
forest/wetland		1927.16		1112.65	
Emergent wetland			618.93		
Enriched northern					141.00
hardwood					141.00
N. hdwd/pine- hemlock-hdwd					
forest			1468.91		
Mid-elev matrix	198.52			1.33	5829.58
Serpentine hillcrest			47.37		
Shrub swamp		15.56	80.95		88.29

 Table 6: Acreages of Under-Represented ELU groups (yellow) and Non-Represented groups (red) on

 a hypothetical ownership in Maine

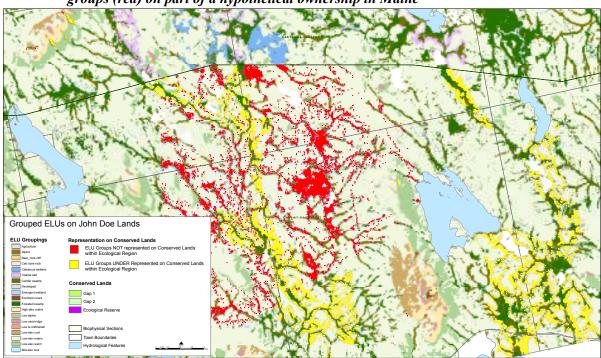


Figure 35: Sample map indicating Under -Represented ELU groups (yellow) and Non -Represented groups (red) on part of a hypothetical ownership in Maine

6.4 Next Steps: Additional Research and Application Needs

The creation and application of ELUs are a relatively recent addition to the conservation toolbox. This study has brought to light many of the strengths of ELUs and highlighted some potential applications. However, additional work is necessary to address some of the weaknesses. Some of these needs are noted below:

- Natural community representation on conservation lands is limited by the incompleteness of our natural community data. MNAP efforts to complete an initial broad-brush inventory of the state are currently scheduled to finish within the next five years, but this effort is contingent on funding.
- This scale of analysis points to the need for a complete, unified, accessible database of conservation lands in the state. Currently this information is held by numerous parties with no protocol for acquiring or sharing data.
- Finer definition is needed for the ELU "wet flats" category, which is currently so broad that it includes many types of wetlands and poorly drained uplands. One way to address this deficiency is to embed National Wetland Inventory (NWI) data into ELUs to develop new wetland ELU classes.

- Use of more current and higher resolution land cover data (to be available in a year or two) is needed to test the correlation between mapped land cover, ELUs and ELU groups.
- Ground truthing is needed in different regions of Maine to match ELUs and ELU groups to predicted natural communities.
- Continued reiteration and re-testing of regionalized ELU groupings is needed to more closely predict the natural communities found on different parts of Maine's landscape.
- Defining a minimum area threshold (i.e., number of pixels) is necessary to approximate the minimum number of acres required for an ELU or ELU group to support viable (current or future) natural communities. This minimum area would relate to the natural patch size (small patch, large patch, matrix) of the ELUs or ELU groups and associated natural communities.
- Further work is needed to describe and quantify larger landscape units (i.e. at the scale of 1,000 acres or larger) that capture specific repeated patterns and orientations of ELUs and ELU groups. These landscape units are often visually discernable, but efforts to incorporate them into conservation planning in a quantifiable way remain subjective and largely untested.

7.0 Literature Cited

Anderson, M.G., Comer, P., Grossman, D., Groves, C., Poiani, K., Reid, M., Schneider, R., Vickery, B., and A. Weakley. 1999. *Guidelines for representing ecological communities in ecoregional conservation plans*. The Nature Conservancy. 74 pp.

Anderson, Mark. G., Merrill, Michael. D and Biasi Frank. B. 1998. Connecticut River Watershed: Ecological Communities and Neotropical Migrant Birds: Final Report Summary.

DeGraaf, R., and M. Yamasaki. 2001. New England Wildlife: Habitat, Natural History, and Distribution. University Press of New England. Hanover, NH.

Crist, Patrick. J. 2000 *Mapping and Categorizing Land Stewardship*. University of Idaho, Moscow, Idaho (<u>http://www.gap.uidaho.edu/handbook/pdf/stewardship.pdf</u>)

Franklin, J., 1995. *Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients*. Progress in Physical Geography 19(4):474-499.

Gawler, S and Cutko, A. (In Press). *Natural Landscapes of Maine*. Maine. Natural Areas Program, Augusta, Maine.

Leak, William B., and Jane R. Riddle, 1979. *Why trees grow where they do in New Hampshire forests*. US Forest Service, NE Forest Experiment Station. NE-INF-37-79.

McMahon, J. S. 1990. *The Biophysical Regions of Maine: Patterns in the Landscape and Vegetation*. M.S Thesis, University of Maine, Orono.

Noss, R., and Robert L. Peters, 1995. *Endangered Ecosystems: A Status Report on America's Vanishing Habitat and Wildlife*. Washington, D.C.: Defenders of Wildlife.

Orndorff, Stephanie. 1996. *Representational Analyses of Conservation Lands in Maine*. M.S Thesis, University of Florida.

The Nature Conservancy, New England Office. 2003. *Supplementary Metadata for Systems30 Raster Data*. Unpublished White Notes.

8.0 Appendices

Short Description	ELU Group	Regional Variants
Agriculture	Agriculture	Agriculture
Alpine	Alpine	Alpine barrens
Bare rock-cliff	Acidic cliff/outcrop/talus	Acidic cliff and talus
Bare rock-cliff	Acidic cliff/outcrop/talus	Acidic outcrop and talus/rocky outcrop
Bare rock-cliff	Acidic cliff/outcrop/talus	Acidic rocky outcrop
Calc bare rock	Calcarous cliff/outcrop/talus	Calcareous cliff and talus
Calc bare rock	Calcarous cliff/outcrop/talus	Calcareous rocky outcrop
Calcarous wetland	Calcarous swamp/bog	Calcareous emergent wetland
Calcarous wetland	Calcarous swamp/bog	Calcareous emergent wetland
Calcarous wetland	Calcarous swamp/bog	Conifer seepage forest
Calcarous wetland	Calcarous swamp/bog	Alkaline conifer-hardwood swamp
Coarse sed	Outwash forest/wetland	Pine-oak forest on outwash
Coarse sed	Outwash forest/wetland	Emergent wetland on outwash
Conifer swamp	Spruce flat/swamp	Spruce Flat
Developed	Developed	Developed
Emergent wetland	Emergent wetland	Emergent wetland
Enriched coves	Enriched northern hardwood	Rich northern hardwood
Forested swamp	Red maple or mixed swamp	Conifer-hardwood acidic swamp
Forested swamp	Red maple or mixed swamp	Red maple swamp
High-elev matrix	Montane spruce-fir forest	Montane spruce-fir/Northern hardwood forest
High-elev matrix	Montane spruce-fir forest	Montane spruce-fir hardwood forest
Low alpine	Sub-alpine woodlands/barrens	Spruce-fir hardwoods/subalpine woodlands
Low alpine	Sub-alpine woodlands/barrens	Subalpine woodlands and barrens
Low crest-ridge	Dry pine - oak woodland	Dry acidic woodland
Low crest-ridge	Dry pine - oak woodland	Dry calcareous woodland
Low crest-ridge	Dry pine - oak woodland	Northern pine-oak forest
Low crest-ridge	Dry pine - oak woodland	Oak-pine-hardwood-hemlock forest
Low to midtransitional	N. hdwd/pine-hemlock-hdwd	Northern hardwood/Pine-hemlock-hardwood forest
Low-elev cool	Lowland spruce - fir - hdwd	Pine-hemlock-hardwood northslope
Low-elev cool	Lowland spruce - fir - hdwd	Northern hardwood forest
Low-elev cool	Lowland spruce - fir - hdwd	Lowland spruce-fir hardwood forest
Low-elev cool	Lowland spruce - fir - hdwd	Northern hardwood forest northslope
Low-elev matrix	Pine - hemlock - hardwood	Pine-hemlock-hardwood forest
Low-elev matrix	Pine - hemlock - hardwood	Pine-hemlock-hardwood northslope
Low-elev matrix	Pine - hemlock - hardwood	Pine-oak/Pine-hemlock-hardwood forest
Low-elev matrix	Pine - hemlock - hardwood	Spruce-fir-hemlock-hardwood
Low-elev warm	Pine - oak forest	Northern pine-oak forest
Mid-elev cool	Spruce - n. hardwood (mid elev)	Northern hardwood forest
Mid-elev cool	Spruce - n. hardwood (mid elev)	Lowland spruce-fir hardwood forest
Mid-elev cool	Spruce - n. hardwood (mid elev)	Northern hardwood forest northslope
Mid-elev matrix	Northern hardwood	Northern hardwood forest
Mid-elev warm	Oak - northern hardwood	Oak-northern hardwood forest
Serpentine hillcrest	Serpentine hillcrest	
	· ·	Serpentine hilltop/crest Shrub swamp
Shrub swamp	Shrub swamp	
Shrub swamp	Shrub swamp	Wet meadow-shrub swamp
Subalpine wetland	Subalpine wetland	Subalpine wetland
Water	Water	Water

Appendix 8.2 ELU Groups for Maine

Appendix 8.3: ELU Components x Conserved Lands x Ecological Sections

Sum of Acres		Elevzone						
Section Name	0 - 800'	800 - 1700'	1700 - 2500'	2500 - 4000'	> 4000'	Grand Total		
ARHILLS-ARLOWS	167406	62905				230311		
BP-STJUPS	22287	1163742	67184			1253213		
CASCO-PENOB-CENTINT	106673	6207				112880		
CENTRAL-WESTMTNS	50833	562159	197779	80586	2650	894007		
EASTINT-EASTCOAST	159459	3286				162745		
EASTLOWS-CENTFOOT	182878	5737				188615		
SCST-SW INT	70167	3801	257			74225		
Grand Total	759703	1807838	265221	80586	2650	2915997		

Elevation X Section X All Conservation (Type 1)

Elevation X Section X GAP1, 2 & EcoReserves (Type 2)

Sum of Acres	Elevzone					
Section Name	0 - 800'	800 - 1700'	1700 - 2500'	2500 - 4000'	> 4000'	Grand Total
ARHILLS-ARLOWS	17536	3834				21369
BP-STJUPS	5401	98703	3623			107727
CASCO-PENOB-CENTINT	33562	1197				34759
CENTRAL-WESTMTNS	29014	168465	69330	46376	2650	315834
EASTINT-EASTCOAST	91170	3108				94278
EASTLOWS-CENTFOOT	15999	943				16942
SCST-SW INT	14993	955	257			16205
Grand Total	207674	277203	73210	46376	2650	607113

Geology X Section X All Conservation (Type 1)

Sum of Acres	Geology								
Section Name	Acidic granitic	Acidic sed / metased	Calcareo us sed / metased	Coarse sediments	Fine sediments	Mafic/interme diate granitic	Mod calcareous sed / metased	Ultramafic	Grand Total
ARHILLS-ARLOWS	1619	180476	13576	2257		24189	8194		230311
BP-STJUPS	42784	970585	4054	35405	3757	177459	19171		1253213
CASCO-PENOB-CENTINT	22069	23143	1321	1543	37845	2940	23604	415	112880
CENTRAL-WESTMTNS	409522	385090	2153	15469	221	59692	19119	2741	894007
EASTINT-EASTCOAST	71865	6550		5541	40287	38273	230		162745
EASTLOWS-CENTFOOT	57322	41289	5884	5342	5023	4216	69539		188615
SCST-SW INT	37035	1693	737	13988	8911	427	11434		74225
Grand Total	642216	1608826	27723	79545	96044	307196	151291	3157	2915997

Geology X Section X Gap1, 2 & EcoReserves (Type 2)

Sum of Acres					Geology	/			
Section Name	Acidic granitic	Acidic sed / metased	Calcareo us sed / metased	Coarse sediments	Fine sediments	Mafic/interme diate granitic	Mod calcareous sed / metased	Ultramafic	Grand Total
ARHILLS-ARLOWS	1531	12015	5601	674		316	1233		21369
BP-STJUPS	6417	74322		12406		14413	168		107727
CASCO-PENOB-CENTINT	3925	10519	35	403	15319	548	3595	415	34759
CENTRAL-WESTMTNS	209757	84890	228	3897	15	8013	7636	1398	315834
EASTINT-EASTCOAST	51624	462		389	19588	22214			94278
EASTLOWS-CENTFOOT	5098	6007	247	814	1413		3364		16942
SCST-SW INT	6154	219	144	2709	3833	215	2931		16205
Grand Total	284507	188433	6255	21291	40168	45719	18927	1814	607113

Landform X Section X All Conservation (Type 1)

Sum of Acres								Landfo	rm						
Section Name	Bottom of steep slope	Cliff	Cove/draw NW-facing	Cove/draw SE-facing	Dry flats	Flat summit / ridgetop	Low hill (gentle slope)	Low hilltop (flat)	Sideslope NW-facing	Sideslope SE-facing	Slope crest	Steep slope	Valley/toe slope	Wet flats	Grand Total
ARHILLS-ARLOWS	68	26	56	78	40612	115	35817	45606	11725	8509	416	203	35206	51875	230311
BP-STJUPS	719	116	363	614	189731	1361	212107	223153	77182	76125	4004	1529	224756	241454	1253213
CASCO-PENOB- CENTINT	180	56	154	222	12432	145	16086	16332	8829	10038	302	373	13388	34343	112880
CENTRAL- WESTMTNS	3806	4126	7437	9603	52957	3133	112270	60740	182664	176544	20910	26608	129199	104011	894007
EASTINT- EASTCOAST	789	303	880	1233	15876	59	23798	22660	16784	14846	149	2347	21072	41949	162745
EASTLOWS- CENTFOOT	63		39	39	25844	99	31550	34574	8381	8379	225	43	27417	51960	188615
SCST-SW INT	52	29	32	89	7178	86	9189	11524	5939	5473	356	312	8026	25939	74225
Grand Total	5676	4655	8962	11877	344631	4998	440817	414590	311504	299915	26363	31414	459065	551531	2915997

Landform X Section X Gap 1, Gap 2 & EcoReserves (Type 2)

Sum of Acres								Landforr	m						
Section Name	Bottom of steep slope	Cliff	Cove/draw NW-facing	Cove/draw SE-facing	Dry flats	Flat summit / ridgetop	Low hill (gentle slope)	Low hilltop (flat)	Sideslope NW-facing	Sideslope SE-facing	Slope crest	Steep slope	Valley/toe slope	Wet flats	Grand Total
ARHILLS-ARLOWS	59	26	25	76	2640	18	2961	3007	2123	1472	150	113	3202	5498	21369
BP-STJUPS	155	61	81	176	18742	147	9818	22837	4597	4875	554	378	14185	31121	107727
CASCO-PENOB- CENTINT	72	22	102	94	2979	44	4234	4057	3337	3123	74	170	3417	13035	34759
CENTRAL- WESTMTNS	1894	3671	4787	5669	12675	1692	32445	13579	71972	72522	12888	20297	36393	25350	315834
EASTINT- EASTCOAST	709	298	801	1136	8248	56	13075	11032	11984	10973	144	2270	11040	22511	94278
EASTLOWS- CENTFOOT	4		8	17	2101	29	1661	2893	974	1053	96	37	1423	6647	16942
SCST-SW INT	0	22	3	38	1368	12	1307	2473	623	1074	141	250	1041	7853	16205
Grand Total	2892	4101	5808	7206	48752	1998	65500	59877	95611	95093	14047	23515	70700	112015	607113

Appendix 8.4: ELUs x Conserved Lands x Ecological Sections

All Conservation Lands (Type 1)

Sum of Acres				Sectio	on Name			
Elu30	AHILLS- ARLOWS	BP- STJUPS	CASCO- PENOB- CENTINT	CENTRAL- WESTMTNS	EASTINT- EASTCOAST	EASTLOWS- CENTFOOT	SCST- SW INT	Grand Total
1104	12.01	2.00	121.43	35.36	0.22			171.02
1105			21.57	1.33				22.91
<u>1111</u> 1113	<u>3.34</u> 1.11		34.69 39.36	0.67 10.45				38.70 50.93
1121	27262.45	745.91	1792.94	352.72	1248.52	8410.96	413.21	40226.72
1122	15918.11	1345.49	3288.33	437.23	1045.92	5260.74	117.87	27413.68
1123	3947.95	1493.16	2874.67	1068.83	257.09	865.34	8.23	10515.26
1124	2949.62	1220.95	3543.19	1269.65	216.39	942.51	11.34	10153.64
<u>1130</u> 1131	27386.99 36029.47	1192.26 3540.30	1330.14 3323.91	<u>845.77</u> 1819.63	604.69 2480.14	<u>6197.69</u> 11498.02	202.38 903.59	37759.92 59595.05
1131	19237.12	2615.36	3475.14	1237.40	690.09	5332.13	36.25	32623.49
1141	43.59	32.02	82.51	221.73	1.11	0.89	00.20	381.85
1143	18.68	28.02	94.96	148.34	3.78	2.22		296.01
1144	53.37	10.90	82.73	240.19	1.56			388.75
<u>1304</u> 1311			0.22	10.23 0.22				10.23 0.44
1313			0.22	1.33	1	1		1.78
1321	2764.36	1129.10	160.12	53.82		961.63	31.36	5100.40
1322	1662.18	217.28	285.55	95.85		279.77	49.59	2590.23
1323 1324	172.58 109.86	0.22	96.07 257.98	<u>137.44</u> 98.74		16.23	78.51	501.05 531.97
1324	2281.10	4.00 861.33	110.97	23.13		3.78 786.39	57.60 17.35	4080.27
1331	3629.03	1631.04	177.69	37.81		3609.02	39.36	9123.96
1332	1926.83	209.27	229.96	70.94		226.84	40.25	2704.09
1341			0.89	13.34			0.22	14.46
<u>1343</u> 1344			1.11	<u>16.68</u> 12.23			0.67	17.35 13.79
1404	0.89		5.12	3.78			0.22	10.01
1405	0.00		0.12	0.10			0.22	
1411			9.12	0.89		2.89	2.89	15.79
1413	1052.50		15.35	0.89	50.07	6.45	10.90	33.58
1421 1422	1052.59 677.64		4850.20 2510.39	66.05 130.32	53.37 24.69	14129.61 10881.99	2200.59 1628.15	22352.43 15853.17
1423	243.52		692.09	338.48	67.16	2579.33	1659.73	5580.32
1424	183.92		964.97	242.19	6.23	1573.89	1028.35	3999.54
1430	1172.91		3655.72	28.47	5.56	10483.90	255.09	15601.64
1431 1432	1892.58 966.75		7562.52 1978.42	<u>157.46</u> 177.69	<u>38.03</u> 35.36	20202.54 9132.63	2706.10 773.27	32559.22 13064.12
1441	16.23		21.57	21.13	35.50	29.36	6.89	95.18
1443	4.23		10.23	19.79		10.45	6.00	50.71
1444	12.23		15.57	26.46	(007.00	5.78	1.33	61.38
1504 1505			<u>137.44</u> 30.02	43.14	<u>1867.00</u> 273.10	26.46	27.35 6.23	2101.41 309.35
1505			46.93	4.00	40.25	17.57	30.91	139.66
1513			127.65	5.34	90.51	18.01	62.94	304.46
1521	1.11	2.67	1981.98	2975.64	6668.94	9039.22	7200.24	27869.81
1522	16.46	2.22	<u>3955.51</u> 2401.64	5955.72	<u>9991.74</u> 12225.25	<u>12106.93</u> 3206.71	6285.09	38313.68 25915.41
1523 1524	5.34 24.91		2708.10	<u>5381.06</u> 6730.77	10822.83	4001.10	2695.42 3248.52	25915.41 27536.22
1530	3.34	50.48	1528.07	2944.73	4018.45	5933.04	2605.13	17083.23
1531	14.46	49.59	3970.85	5489.36	11368.14	10434.08	8589.10	39915.59
1532	26.69	24.69	3249.63	7548.96	8489.24	9994.85	3703.54	33037.59
<u>1541</u> 1543		L	59.38 28.91	<u>257.53</u> 168.13	735.46 814.63	32.25 22.68	41.59 19.79	<u>1126.21</u> 1054.15
1543			85.84	244.86	1172.91	30.25	37.36	1571.22
1604	4.00			6.89	4.23			15.12
1611	7.12		6.45	0.67	13.57	2.45	0.22	30.47
1613 1621	6.89 1752.47	111.20	4.45 268.87	0.22	<u>16.23</u> 6752.79	6.23 517.07	0.44 93.18	34.47 9603.88
1622	1603.02	235.29	423.88	287.56	6303.10	1057.71	32.47	9943.04
1623	1125.09	62.49	521.07	311.57	2285.77	435.23	30.25	4771.47
1624	325.14	15.79	410.76	304.90	2193.25	378.52	4.89	3633.26
1630	2390.52	404.98	184.37	97.63	4632.03	417.21	67.39	8194.13
<u>1644</u> 1721			<u>1.11</u> 3.11	21.79	22.02			44.92 3.11
1721			26.02					26.02
1723			165.02					165.02
1724			67.39					67.39

Elu30	AHILLS- ARLOWS	BP- STJUPS	CASCO- PENOB- CENTINT	CENTRAL- WESTMTNS	EASTINT- EASTCOAST	EASTLOWS- CENTFOOT	SCST- SW INT	Grand Total
1730			5.34					5.34
1731			26.69					26.69
<u>1732</u> 1741			56.04 0.22					56.04 0.22
1741			4.45					4.45
1744			0.22					0.22
1830	638.05	642.50	336.26	342.04	1191.81	1076.61	3088.39	7315.67
1831	1220.95	1662.62	961.86	720.78	3065.71	3256.52	8215.25	19103.69
1832	392.75	897.36	244.86	694.98	1283.44	1009.00	2684.75	7207.14
<u>1921</u> 1922		44.92 20.02	7007.65 4294.88	<u>2.00</u> 6.45	7910.79	<u>1261.20</u> 288.00	1495.83	17722.40
1922		50.71	4294.88 550.87	4.23	6241.28 675.63	2.00	633.60 93.41	11484.23 1376.84
1924		13.34	478.59	4.20	480.37	0.22	56.27	1028.80
1930		147.00	5107.73	4.45	5419.31	873.79	921.16	12473.44
1931		205.49	17243.36	20.91	14236.81	2368.50	5194.47	39269.53
1932		149.23	3162.01	4.45	5322.35	229.51	516.40	9383.94
2104	34.69	493.72	81.40	1578.56		2.22		2190.59
2105 2111	4.45 37.58	41.81 414.54	1.56 24.69	<u>178.81</u> 217.50		2.22		226.62 696.54
2111	83.62	990.99	59.16	1072.16		19.35		2225.28
2121	10988.51	182613.02	122.32	32278.12		138.11		226140.07
2122	12129.62	155894.76	694.54	39862.66		1011.67		209593.25
2123	3303.89	43837.51	940.73	32286.57		558.88		80927.58
2124	3249.18	40362.82	896.25	31375.42		538.86		76422.53
2130	5840.30 4940.49	143130.88 168867.48	10.67 28.91	<u>25289.81</u> 40100.84		51.60		174323.26
2131 2132	6996.31	156170.09	136.77	40100.84 43253.73		74.28 381.63		214012.01 206938.53
2132	0330.31	418.55	2.00	766.37		301.03		1186.92
2143		200.16	12.90	1392.63				1605.69
2144	3.78	282.22	25.58	1827.19				2138.77
2304				0.22			1.33	1.56
2305								0.50
2311	1.78			3.11			4.67	9.56
2313 2321	0.22 316.91			4.89 260.42			4.45 10.23	9.56 587.57
2322	363.62	0.89		326.70			54.26	745.47
2323	33.80	0.00		212.61			202.16	448.57
2324	15.57			60.94			76.95	153.45
2330	86.51			272.43			2.67	361.61
2331	114.53	0.11		203.71			11.79	330.03
2332 2341	96.96	0.44		235.96			42.92 3.11	376.29 3.11
2341							2.45	2.45
2344							4.23	4.23
2404		2.22	3.11	92.96			2.22	100.52
2405				6.00				6.00
2411	1.11	37.36	6.23	16.68		3.78	8.01	73.17
2413	1.11	71.61	10.01	66.94		7.78	26.91	184.37
2421 2422	331.15 597.80	2986.54 3647.27	72.06 264.20	<u>635.16</u> 1289.22		<u>59.16</u> 215.72	61.83 243.30	4145.88 6257.51
2422	130.99	1013.01	131.88	1528.07	1	73.61	425.66	3303.23
2424	117.20	1530.30	269.32	2436.78		54.71	198.60	4606.90
2430	210.16	2611.80	112.53	625.15		18.46	11.79	3589.89
2431	214.39	3591.89	175.91	1120.20		19.35	64.94	5186.68
2432	366.28	3676.85	267.32	1884.57		47.15	111.42	6353.59
2441 2443		1.33		74.28 80.51				75.61 80.51
2443		0.89		187.48	1	1	1	188.37
2504	65.83	344.49	21.35	2828.19	475.92	14.01	257.76	4007.55
2505	21.35	39.14	2.89	342.93	29.58		22.91	458.80
2511	12.01	160.57	17.12	515.07	5.34	70.50	32.91	813.52
2513	110.97	578.00	45.81	1921.49	42.25	167.46	186.81	3052.81
2521	12.23	3025.23	68.94	16158.07	25.80	<u>57.16</u> 447.90	14.46	19361.89
2522 2523	65.16 762.37	5636.59 5743.78	320.69 408.54	<u>36254.75</u> 46562.96	<u>190.81</u> 1272.76	<u>447.90</u> 643.39	124.32 673.63	43040.23 56067.43
2523	317.80	7139.98	416.32	50317.42	1126.65	885.57	725.23	60928.98
2530	15.12	3283.65	50.48	13033.87	4.45	5.56	7.12	16400.26
2531	43.81	5528.95	132.99	30773.39	21.57	35.36	38.47	36574.55
2532	82.95	8578.65	254.42	39333.58	18.68	124.32	92.52	48485.11
2541	4.45	163.24	7.78	1186.03	4.89	0.89	0.22	1367.50
<u>2543</u> 2544	4.45	<u>85.18</u> 222.39	9.79	1408.65	31.36	3.56	3.34	1536.52
2544	8.67 86.07	222.39	9.79	<u>1983.98</u> 219.73	36.25	2.67	45.15	2308.90 564.88
2605	50.07	17.12		11.34		1	1	28.47
2611	51.60	374.96		56.04				482.60
2613	211.72	1108.64		186.81				1507.17

Elu30	AHILLS- ARLOWS	BP- STJUPS	CASCO- PENOB- CENTINT	CENTRAL- WESTMTNS	EASTINT- EASTCOAST	EASTLOWS- CENTFOOT	SCST- SW INT	Grand Total
2621	1124.20	22720.49	4.00	3543.63	LADICOADI		500 1101	27392.33
2622	2783.04	25931.87	20.68	5302.33				34037.92
2623	1999.77	16866.40	20.00	8345.80	1	1		27211.97
2624	1215.83	17915.43	14.90	6791.26				25937.43
2630	586.01	22827.02	11100	3161.56				26574.59
2631	610.92	32195.38		6423.20				39229.50
2632	2087.84	34594.13		7450.66				44132.63
2641	1.78	78.51		164.35				244.63
2643	1.33	34.25		165.46				201.04
2644		70.05		227.29				297.34
2704			2.67					2.67
2705								
2711								
2713								
2721			4 70	80.28				80.28
2722			1.78	191.26				193.04
2723			46.04	104.30			-	150.34
2724			10.23	48.70				58.93
2730				67.61				67.61
2731 2732				<u>104.97</u> 244.19			1	104.97 244.19
2732				244.19			1	244.19
2741								
2743					1			
2830	0.67	9294.53		3203.37	1	1	1	12498.57
2831	0.22	16517.46		6120.52				22638.20
2832	4.67	6390.06		4040.24				10434.97
2921		412.10		31.80				443.90
2922		188.59		7.12				195.71
2923		23.57						23.57
2924		7.78		0.22				8.01
2930		422.99		12.68				435.67
2931		1818.30		124.10				1942.39
2932		252.64		2.67				255.31
3104		113.64		3465.13				3578.77
3105		15.57		382.52				398.09
3111		250.64		637.16			-	887.80
3113		643.16		3699.75				4342.92
3121		9347.24		1882.79			-	11230.03
3122		18885.96		9621.45				28507.42
3123 3124		7257.62 7430.42		28846.57 25164.38				36104.19 32594.81
3124		4859.54		1240.74				6100.28
3131		5166.00		4972.52				10138.52
3132		10627.57		11443.31				22070.87
3141		23.57		260.42				284.00
3143		3.11		1019.01				1022.13
3144		15.57		1273.21				1288.78
3304								
3311								
3313								
3321								
3322								
3323						+	-	l
3324								
3330								┟─────┤
3331 3332							-	┟────┤
						+		┥────┤
3341 3344							-	┟────┤
3404				384.96			1	384.96
3404				50.04				50.04
3405				27.35		1	1	27.35
3413				140.11	1		1	140.11
3421				25.80			1	25.80
3422				211.05				211.05
3423				898.92				898.92
3424				1937.28	1			1937.28
3430				9.34				9.34
3431				128.77				128.77
3432				231.29				231.29
3441				21.57				21.57
3443				56.71				56.71
3444				365.84				365.84
3504		306.90		5934.15			22.68	6263.74
3505		1.56		919.60	1			921.16

Elu30	AHILLS- ARLOWS	BP- STJUPS	CASCO- PENOB- CENTINT	CENTRAL- WESTMTNS	EASTINT- EASTCOAST	EASTLOWS- CENTFOOT	SCST- SW INT	Grand Total
3511		100.74		438.56			6.45	545.76
3513		473.48		3199.59			64.05	3737.12
3521		10.90		1502.72			3.56	1517.18 7959.50
<u>3522</u> 3523		83.18 628.26		7855.86 26103.33			20.46 72.28	26803.87
3524		459.69		24152.93			65.38	24678.01
3530		1.78		959.63			00.00	961.41
3531		5.12		3356.82			0.67	3362.60
3532		26.46		6378.27			1.33	6406.07
3541		1.33		541.53				542.86
3543		12.45		1567.21				1579.67
3544		12.45		1624.59				1637.05
<u>3604</u> 3605		6.45 0.44		430.11 9.79				436.56 10.23
3611		21.79		87.62				10.23
3613		138.33		509.06				647.39
3621		3.56		170.58				174.13
3622		17.12		1146.44				1163.57
3623		205.05		5490.92				5695.97
3624		24.91		3885.90				3910.81
3630				154.34				154.34
3631				502.83				502.83
3632		2.89		1377.51			-	1380.40
3641				21.35		-		21.35
3643				44.48				44.48
<u>3644</u> 3704		+		<u>118.98</u> 11.56		+	1	<u>118.98</u> 11.56
3704				11.50				11.00
3703				2.67				2.67
3713				6.45				6.45
3721				2.00				2.00
3722				8.45				8.45
3723				368.95				368.95
3724				66.27				66.27
3730								
3731				4.45				4.45
3732				8.01				8.01
<u>3741</u> 3743				13.12				13.12
3743				37.36 20.24				37.36 20.24
3830				72.28				72.28
3831				104.08				104.08
3832				170.58				170.58
4104				3534.96				3534.96
4105				349.60				349.60
4111				515.29				515.29
4113				4244.40				4244.40
4121				284.22				284.22
4122		+		1604.35		+	+	1604.35
4123				9833.40			-	9833.40
<u>4124</u> 4130		+		8791.92 119.65		+	+	8791.92 119.65
4130				477.70				477.70
4132				1488.71	1	1	1	1488.71
4141				42.03				42.03
4143				286.67				286.67
4144				403.65				403.65
4304								
4311								ļ
4313								
4321		+				+	+	l
4322						+		l
<u>4323</u> 4324		+		+		+	+	
4324 4330						1		
4330						1	1	
4332	1	1		1	1	1	1	
4404				839.09			İ	839.09
4405				155.23				155.23
4411				41.37				41.37
4413				436.34				436.34
4421				18.68				18.68
4422	_			137.00			1	137.00
4423				536.64				536.64
4424 4430				958.97				958.97
		1	1	1.33	1	1	1	1.33

 Contin	ued

Elu30	AHILLS- ARLOWS	BP- STJUPS	CASCO- PENOB- CENTINT	CENTRAL- WESTMTNS	EASTINT- EASTCOAST	EASTLOWS- CENTFOOT	SCST- SW INT	Grand Total
4431	AILEONO	010010	ULITIN	58.27	LAUIOUAUI	OLINII OOT		58.27
4432				46.04				46.04
4441				2.45				2.45
4443				49.82				49.82
4444				90.96				90.96
4504				6270.86				6270.86
4505				1131.99				1131.99
4511				448.57				448.57
<u>4513</u> 4521				4565.76 290.00				4565.76 290.00
4522				1350.16				1350.16
4523				12436.97				12436.97
4524				10840.18				10840.18
4530				442.57				442.57
4531				898.47				898.47
4532				1486.04				1486.04
4541				151.45				151.45
4543		-		867.34			-	867.34
4544				894.92				894.92
4604 4605		+		<u>261.31</u> 5.56	ł	1	+	261.31 5.56
4605		1		34.25			1	34.25
4613		1		231.51			<u> </u>	231.51
4621				6.23				6.23
4622				41.14				41.14
4623				489.94				489.94
4624				723.89				723.89
4630				3.78				3.78
4631				8.90				8.90
4632				39.14				39.14
4641				2.67			-	2.67
4643				25.58				25.58 9.79
4644 4704				9.79 165.91				165.91
4704				74.72				74.72
4711				3.34				3.34
4713				143.22				143.22
4721				8.45				8.45
4722				33.36				33.36
4723				468.81				468.81
4724				264.65				264.65
4730				1.11				1.11
4731 4732				10.01				10.01
4732		-		27.35 12.68			-	27.35 12.68
4743				36.03				36.03
4744				28.69				28.69
5104		1		6.23	İ		1	6.23
5105				0.22				0.22
5111				1.56				1.56
5113				26.91				26.91
5504				483.04				483.04
5505				505.95				505.95
5511		 		75.17			 	75.17
5513				386.52				386.52
5521				2.22			<u> </u>	2.22
<u>5522</u> 5523		1		<u>113.87</u> 893.80			1	113.87 893.80
5523				78.28				78.28
5531	1	1	1	0.67	1		1	0.67
5532		1		1.11	1	1	1	1.11
5543				1.56				1.56
5544				0.22				0.22
5704				1.11				1.11
5711				5.12				5.12
5713				49.59				49.59
5723	1		1	14.01	1		1	14.01
5724				2.45				2.45

Appendix 8.5: ELU Groups x Conserved Lands x Ecological Sections

		ARH ARL	-		E	BP-JT	JUP	S	CA	SCO- CEN		OB-			RAL MTN				FINT- CAS			ASTI ENT			S	CST-	SW IN	١T
	wi	jion- de ures		erved ures		jion- de ures	Cons Figi			ion- de ıres		erved ures	Reg wie Figu	de	Cons Figu	erved ires	Regi wia Figu	de	Cons Figu	erved ures	Reg wi Figu			erved ures	Reg wi Figu	de		erved ures
ELU Group	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation
Agriculture	29488 0.0	12. 0	0.4	0.5	7483. 1	0.2	7.0	0.0	40637 2.6	9.7	1.0	3.5	71955 .7	1.6	1.3	0.1	9040. 4	0.5	4.1	0.2	76350 .4	2.3	0.9	0.4	11510 5.4	7.9	1.4	2.2
Alpine		0.0		0.0		0.0		0.0		0.0		0.0	6461. 9	0.1	68. 7	0.5		0.0		0.0		0.0		0.0		0.0		0.0
Bare_rock-cliff	284.2	0.0	15. 1	0.0	383.6	0.0	47. 1	0.0	1141. 1	0.0	6.9	0.1	4006. 7	0.1	51. 1	0.2	1002. 1	0.1	48. 8	0.3	86.7	0.0	5.9	0.0	621.6	0.0	8.7	0.1
Calc bare rock	233.7	0.0	2.7	0.0	240.9	0.0	31. 1	0.0	592.0	0.0	1.7	0.0	3261. 0	0.1	28. 7	0.1	14.5	0.0	3.1	0.0	139.2	0.0	3.2	0.0	598.5	0.0	4.9	0.0
Calcarous wetland	99674 .5	4.1	4.5	1.9	8402. 8	0.2	35. 7	0.2	12681 4.7	3.0	4.2	4.7	25808 .9	0.6	3.7	0.1	5819. 9	0.3	0.4	0.0	20902 8.2	6.4	6.8	7.5	24448 .3	1.7	8.6	2.8
Coarse sed	18347 .8	0.7	5.5	0.4	44960 .0	1.2	38. 9	1.4	47164 .9	1.1	1.2	0.5	54404 .7	1.2	15. 2	0.9	39985 .1	2.3	6.3	1.5	37380 .8	1.1	5.8	1.1	76460 .1	5.2	7.6	7.8
Conifer swamp	14285 4.3	5.8	14. 1	8.7	31175 1.5	8.4	40. 2	10. 0	17931 0.0	4.3	4.0	6.3	16883 3.4	3.8	21. 8	4.1	91896 .3	5.3	9.9	5.6	22884 3.1	7.0	7.7	9.3	71401 .7	4.9	6.4	6.1
Developed	34577 .8	1.4	1.9	0.3	1644. 3 6	0.0	18. 4	0.0	16326 5.1	3.9	1.1	1.6	15569 .4	0.3	2.9	0.1	13755 .1	0.8	3.8	0.3	19094 .2	0.6	1.7	0.2	10394 4.8	7.1	1.6	2.2
Emergent wetland	8876. 9	0.4	12. 3	0.5	12284 .2	0.3	32. 7	0.3	38014 .2	0.9	5.3	1.8	14284 .9	0.3	16. 7	0.3	22024 .7	1.3	11. 1	1.5	13734 .2	0.4	6.3	0.5	20221	1.4	13. 4	3.7
Enriched coves	6230. 4	0.3	2.7	0.1	2931. 2	0.1	21. 0	0.0	9207. 3 8	0.2	4.2	0.3	31044 .1	0.7	23. 9	0.8	1036. 8	0.1	67. 0	0.4	3675. 5	0.1	0.6	0.0	3058. 2	0.2	7.1	0.3
Forested swamp	22822 4.6	9.3	10. 4	10. 3	29165 0.8	7.9	33. 6	7.8	32213 6.3	7.7	4.9	14. 1	28588 7.0	6.4	19. 5	6.2	20796 9.1	11. 9	12. 3	15. 7	25692 5.2	7.9	5.8	7.9	17015 8.2	11. 6	8.3	19. 0
High-elev matrix	537.1	0.0	0.0	0.0	15960 .4	0.4	44. 6	0.6		0.0		0.0	30290 7.8	6.8	25. 9	8.8		0.0		0.0		0.0		0.0	237.3	0.0	48. 2	0.2
Low alpine	6.0	0.0	0.0	0.0	485.0	0.0	35. 9	0.0		0.0		0.0	21175 6.7	4.7	37. 1	8.8		0.0		0.0		0.0		0.0	9.6	0.0	58. 1	0.0
Low crest- ridge	6577. 1	0.3	15. 9	0.5	13944 .4	0.4	27. 0	0.3	12997 .0	0.3	3.9	0.4	21234 .3	0.5	19. 4	0.5	14707 .0	0.8	12. 4	1.1	5852. 3	0.2	7.7	0.2	3877. 9	0.3	9.4	0.5

	ARH	ILLS-/	ARLO	WS	BP-J	TJUPS	5			CO-PH TINT	ENOB-			TRAL TMTN				ГІNT- ГСОА	ST			TLOW TFOO			SCS	г-sw i	NT	
	Regio wide Figure		Conse Figur		Regio wide Figur		Conse Figur		Regio wide Figur		Cons Figur	erved res	Regio wide Figur		Cons Figur		Regio wide Figur		Cons Figur		Regio wide Figur		Cons Figu	erved res	Regio wide Figur		Cons Figur	erved res
ELU Group	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Icres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation	Acres	% of Total Area	% in Conservation	% of Total in Conservation
Low to midtransiti	23.1	0.0	0.0	0.0	31113.5Acres	0.8	61. 0	1.5		0.0	°. ∩	0.0	106010. 8	2.4	<u>⊳∖</u> 17. 8	2.1		0.0		0.0		0.0	<u>~ ∪</u>	0.0	26.0	0.0	79. 5	0.0
Low-elev cool	129559. 5	5.3	9.0	5.1	114856. 5	19. 3	31. 6	18. 0	7342.6	0.2	18. 4	1.2	613255. 1	13. 7	21. 3	14. 6	2449.5	0.1	57. 2	0.9	20652.7	0.6	4.9	0.5	11800.5	0.8	7.9	1.3
Low-elev matrix	1311452) .2	53. 5	11. 6	66. 4	1692159 3 .7	45. 8	36. 3	49. 0	. 2097178) 6	50. 3	2.9	53. 9	1339494 5	30. 0	19. 4	29. 1	941200. 5 8	54. 0	10. 2	58. 7	2035440 3 .4	62. 4	6.0	65. 0	684879. 	46. 9	4.8	44. 3
Low-elev warm	30131.9	1.2	11. 9	1.6	3 12899.8	0.3	14. 5	0.1	183255. 9	4.4	4.3	6.9	. 83614.5	1.9	13. 8	1.3	70541.5	4.0	21. 0	9.1	96685.3	3.0	7.1	3.7	0 75910.1	5.2	6.0	6.1
Mid-elev cool	24.9	0.0	0.0	0.0	t 27612.3	0.7	62. 3	1.4		0.0		0.0	. 241563. 0 9	5.4	20. 0	5.4	~	0.0		0.0		0.0		0.0	54.0	0.0	78. 2	0.1
Mid-elev matrix	10080.7	0.4	11. 4	0.5	76320.4	2.1	45. 9	2.8	141.0	0.0	26. 7	0.0	. 201682. 0	4.5	18. 4	4.2	1.3	0.0	0.0	0.0	1144.0	0.0	1.0	0.0	1 262.0	0.0	27. 5	0.1
Mid-elev warm	3 48367.6	2.0	10. 1	2.1	264057 2	7.1	25. 5	5.4	6702.5	0.2	21. 0	1.2	422085. 3 2	9.4	22. 9	10. 8	2047.1	0.1	53. 9	0.7	15308.3	0.5	9.7	0.8	13680.4	0.9	6.8	1.2
Serpentine hillcre	5.3	0.0	0.0	0.0		0.0		0.0	8.5	0.0	10. 5	0.0	871.6	0.0	3.7	0.0		0.0		0.0		0.0		0.0	6	0.0		0.0
Shrub swamp	268.7	0.0	12. 7	0.0	3501.6	0.1	28. 9	0.1	1229.0	0.0	2.3	0.0	882.7	0.0	15. 1	0.0	4865.3	0.3	3.9	0.1	415.2	0.0	4.9	0.0	93.6	0.0	7.1	0.0
Subalpine wetland		0.0		0.0		0.0		0.0		0.0		0.0	9 478.1	0.0	45. 1	0.0		0.0		0.0		0.0		0.0		0.0		0.0
Water	82022.2	3.3	3.3	1.2	161571. 5	4.4	7.0	0.9	667456. 2	13. 6	0.7	3.4	; 241981. 6	5.4	3.6	1.0	314858. 8	18. 1	2.0	3.8	241556. 3	7.4	2.2	2.9	84833.7	5.8	1.7	1.9
Grand Total	2453240 .6	100 .0		100 .0	3696215 .4	100 .0		100 .0	4170329 .9	100 .0		100 .0	4469336 .9	100 .0		100 .0	1743215 .2	100 .0		100 .0	3262312 .3	100 .0		100 .0	1461682 .2	100. 0		100 .0

Appendix 8.6: ELUs and Predicted Natural Community Types

		Elevation												
Landform, Substrate		1000	2000	3000	4000	5000								
Description	Code	0-800'	800-1700'	1700-2500'	2500-4000'	>4000'								
Steep Slope: Acidic Sed/metased	104	Acidic Cliff Gorge	Acidic Cliff Gorge	Acidic Cliff Gorge	Bilberry - Mountain-Heath Alpine Snowbank	Bilberry - Mountain- Heath Alpine Snowbank								
		Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Dwarf Heath - Graminoid Alpine Ridge	Diapensia Alpine Ridge								
		Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Fir - Heartleaved Birch - Subalpine Forest	Dwarf Heath - Graminoid Alpine Ridge								
		Birch - Oak Talus Woodland	Birch - Oak Talus Woodland	Labrador Tea Talus Dwarf- Shrubland	Heath - Lichen Subalpine Slope Bog	Fir - Heartleaved Birch - Subalpine Forest								
		Black Spruce Woodland	Black Spruce Woodland	Rock Outcrop Ecosystem	Labrador Tea Talus Dwarf- Shrubland	Heath - Lichen Subalpine Slope Bog								
		Chestnut Oak Woodland	Chestnut Oak Woodland	Spruce - Fir - Broom-moss Forest	Rock Outcrop Ecosystem	Labrador Tea Talus Dwarf-Shrubland								
		Coastal Headland Ecosystem	Hemlock Forest	Spruce - Fir - Northern Hardwoods Forest	Spruce - Fir - Birch Krummholz	Spruce - Fir - Birch Krummholz								
		Crowberry - Bayberry Headland	Labrador Tea Talus Dwarf- Shrubland	Spruce - Fir - Wood Sorrel - Feather-Moss Forest	Spruce - Fir - Northern Hardwoods Forest	Subalpine Heath - Krummholz								
		Hemlock Forest	Red Oak - Northern Hardwoods - White Pine Forest	Spruce - Northern Hardwoods Forest	Spruce Talus Woodland									
		Red Oak - Northern Hardwoods - White Pine Forest	Rock Outcrop Ecosystem	Spruce Talus Woodland	Subalpine Heath - Krummholz									
		Seaside Goldenrod - Goosetongue Open Headland	Spruce - Fir - Broom-moss Forest	Subalpine Heath - Krummholz										
		Spruce - Fir - Broom-moss Forest	Spruce - Fir - Northern Hardwoods Forest	Three-toothed Cinquefoil - Blueberry Low Summit Bald										
		Spruce - Fir - Northern Hardwoods Forest	Spruce - Fir - Wood Sorrel - Feather-Moss Forest											
		Spruce - Fir - Wood Sorrel - Feather-Moss Forest	Spruce - Northern Hardwoods Forest											

		Elevation													
Landform, Substr	ate	1000	2000	3000	4000	5000									
Description	Code	0-800'	800-1700'	1700-2500'	2500-4000'	>4000'									
		Spruce - Northern Hardwoods Forest	Spruce Talus Woodland												
		White Oak - Red Oak Forest	Three-toothed Cinquefoil - Blueberry Low Summit Bald												
Cliff: Acidic Sed/metased	105	Acidic Cliff Gorge	Acidic Cliff Gorge	Acidic Cliff Gorge	Rock Outcrop Ecosystem										
		Coastal Headland Ecosystem	Pitch Pine Woodland	Rock Outcrop Ecosystem	Spruce Talus Woodland										
		Pitch Pine Woodland	Rock Outcrop Ecosystem	Spruce Talus Woodland											
		Seaside Goldenrod - Goosetongue Open Headland	Spruce Talus Woodland												
				•	•										
Flat Summit/Ridgetop: Acidic Sed/metased	111	Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Crowberry - Bilberry Summit Bald	Crowberry - Bilberry Summit Bald									
		Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Dwarf Heath - Graminoid Alpine Ridge	Diapensia Alpine Ridge									
		Black Spruce Woodland	Black Spruce Woodland	Crowberry - Bilberry Summit Bald	Fir - Heartleaved Birch - Subalpine Forest	Dwarf Heath - Graminoid Alpine Ridge									
		Chestnut Oak Woodland	Chestnut Oak Woodland	Red Pine Woodland	Rock Outcrop Ecosystem	Fir - Heartleaved Birch - Subalpine Forest									
		Crowberry - Bilberry Summit Bald	Crowberry - Bilberry Summit Bald	Red Spruce - Mixed Conifer Woodland	Spruce - Fir - Northern Hardwoods Forest	Subalpine Heath - Krummholz									
		Jack Pine Woodland	Oak - Pine Forest	Rock Outcrop Ecosystem	Subalpine Heath - Krummholz										
		Oak - Pine Forest	Oak - Pine Woodland	Spruce - Fir - Northern Hardwoods Forest											
		Oak - Pine Woodland	Pitch Pine Woodland	Spruce - Heath Barren											
		Pitch Pine Woodland	Red Pine - White Pine Forest	Spruce - Northern Hardwoods Forest											

		Elevation													
Landform, Sub	strate	1000	2000	3000	4000	5000									
Description	Code	0-800'	800-1700'	1700-2500'	2500-4000'	>4000'									
		Red Pine - White Pine Forest	Red Pine Woodland	Subalpine Heath - Krummholz											
		Red Pine Woodland	Red Spruce - Mixed Conifer Woodland	Three-toothed Cinquefoil - Blueberry Low Summit Bald											
		Red Spruce - Mixed Conifer Woodland	Rock Outcrop Ecosystem	White Pine - Mixed Conifer Forest											
		Spruce - Fir - Northern Hardwoods Forest	Spruce - Fir - Northern Hardwoods Forest												
		Spruce - Heath Barren	Spruce - Heath Barren												
		Spruce - Northern Hardwoods Forest	Spruce - Northern Hardwoods Forest												
		White Pine - Mixed Conifer Forest	Three-toothed Cinquefoil - Blueberry Low Summit Bald												
			White Pine - Mixed Conifer Forest												
Slope Crest: Acidic Sed/metased	113	Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Aspen-Birch Woodland/Forest Complex	Bilberry - Mountain-Heath Alpine Snowbank	Bilberry - Mountain- Heath Alpine Snowbank									
Sea measea		Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Beech - Birch - Maple Forest	Crowberry - Bilberry Summit Bald	Crowberry - Bilberry Summit Bald									
		Black Spruce Woodland	Black Spruce Woodland	Crowberry - Bilberry Summit Bald	Dwarf Heath - Graminoid Alpine Ridge	Diapensia Alpine Ridge									
		Chestnut Oak Woodland	Chestnut Oak Woodland	Red Spruce - Mixed Conifer Woodland	Fir - Heartleaved Birch - Subalpine Forest	Dwarf Heath - Graminoid Alpine Ridge									
		Coastal Headland Ecosystem	Crowberry - Bilberry Summit Bald	Rock Outcrop Ecosystem	Rock Outcrop Ecosystem	Fir - Heartleaved Birch - Subalpine Forest									
		Crowberry - Bayberry Headland	Oak - Pine Forest	Spruce - Fir - Northern Hardwoods Forest	Spruce - Fir - Birch Krummholz	Spruce - Fir - Birch Krummholz									
		Crowberry - Bilberry Summit Bald	Oak - Pine Woodland	Spruce - Heath Barren	Spruce - Fir - Northern Hardwoods Forest	Subalpine Heath - Krummholz									
		Jack Pine Woodland	Pitch Pine Woodland	Spruce - Northern Hardwoods Forest	Subalpine Heath - Krummholz										

Appendix 8.7: Correlation of Natural Communities and Grouped ELUs on the Bigelow Preserve (numbers indicate acres)

		ELU Groups																		
Percentage of ELU Group		Alpine	Acide cliff/outerop/talus	Calcarous cliff/outcrop/talus	Calcarous swamp/bog	Outwash forest/wetland	Spuce flat/swamp	Enriched northern hardwood	Red maple or mixed swamp	Montane spruce-fir forest	Sub-alpine woodlands/barrens	Dry pine - oak woodland	N. hdwd/pine-hemlock- hdwd	Lowland spruce - fír - hdwd	Pine - hemlock - hardwood	Pine - oak forest	Spruce - n. hardwood (mid elev)	Northern hardwood	Oak - northern hardwood	Subalpine wetland
	Acidic Cliff	2	2	1							1									
	Alpine Ecosystem																			19
	Aspen-Birch Forest- Woodland Complex			3				13		2	1							2		
	Beech - Birch Maple Forest		1	6	6	3	5	38	24	10		15	10	45	15	19	43	66	23	
	Crowberry - Bilberry Open Summit Bald	24		2								8								
ities	Fir - Heartleaf Birch Sub-alpine Forest	45	75	73	36			23		35	79	8	8		6		10	7	22	75
iun	Peatland Ecosystem					2	1		2											
Comm	Red Spruce Mixed Conifer Woodland	2									1									
Natural Communities	Spruce - Fir Birch Krummholz	27		3							10									6
Nat	Spruce - Larch Forested Bog					1	1													
	Spruce - Northern Hardwood Forest		20	11	33	64	44	23	41	44	6	69	68	46	64	81	41	23	48	
	Spruce-Fir Feathermoss / Broommoss Forest			2	5	27	37	2	6	7			14	5	13		5	1	5	
	Spruce-Larch Forested Bog				16		1		6					2					1	
	Streamshore Ecosystem				4	4	13		20					1	1					
	Tarn			070		400	4.86	1	4.80		1000		100		1	- 10				
	Total Acreage	54	35 <	376	12 25-	180	176 50-	108	153	2754	4000	2	108	456	399	10	562	348	517	2
			25%		49%		75%		>75%											